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A robot model of the basal ganglia: Behavior and intrinsic processing*
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Abstract

The existence of multiple parallel loops connecting sensorimotor systems to the basal ganglia has given rise to proposals that these nuclei

serve as a selection mechanism resolving competitions between the alternative actions available in a given context. A strong test of this

hypothesis is to require a computational model of the basal ganglia to generate integrated selection sequences in an autonomous agent, we

therefore describe a robot architecture into which such a model is embedded, and require it to control action selection in a robotic task

inspired by animal observations. Our results demonstrate effective action selection by the embedded model under a wide range of sensory and

motivational conditions. When confronted with multiple, high salience alternatives, the robot also exhibits forms of behavioral disintegration

that show similarities to animal behavior in conflict situations. The model is shown to cast light on recent neurobiological findings concerning

behavioral switching and sequencing.

q 2005 Published by Elsevier Ltd.
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1. Introduction

The basal ganglia are a group of highly interconnected

central brain structures with a critical influence over

movement and cognition. Interest in these structures derives

in part from their importance for a cluster of brain disorders

that includes Parkinson’s disease, Huntington’s disease,

Tourette’s syndrome, schizophrenia, and attention deficit

hyperactivity disorder, and has driven more than a century

of neurobiological study. This extensive research effort has

given rise to a wealth of relevant data, and consequently a

pressing need for a better functional understanding of these

structures. The basal ganglia, therefore, present one of the

most exciting prospects for computational modeling of

brain function and have been the focus of extensive

modeling research efforts (for reviews see Gillies &

Arbuthnott, 2000; Gurney, Prescott, Wickens, & Redgrave,
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2004; Houk, Davis, & Beiser, 1995; Prescott, Gurney, &

Redgrave, 2002; Wickens, 1997).

A recurring theme in the basal ganglia literature is that

these structures operate to release inhibition from desired

actions while maintaining or increasing inhibition on

undesired actions (Cools, 1980; Denny-Brown & Yanagi-

sawa, 1976; Hikosaka, 1994; Mink, 1996; Robbins &

Brown, 1990; Wickens, 1997). In our own theoretical work

(Prescott, Redgrave, & Gurney, 1999; Redgrave, Prescott,

& Gurney, 1999a) we have developed the idea that the basal

ganglia acts as an action selection mechanism—resolving

conflicts between functional units that are physically

separated within the brain but are in competition for

behavioral expression. We have shown how this proposal

relates to known anatomy and physiology and meets several

high-level computational requirements for an effective

action selection device. In line with this hypothesis we

also embarked on a program of modeling the circuitry of the

basal ganglia and related structures at several levels of

abstraction. A key focus has been to investigate ‘system’

level models of the basal ganglia constrained by the known

functional anatomy in which neural populations are

represented by simple leaky integrator units (Gurney,

Prescott, & Redgrave, 2001a,b; Gurney, Humphries,
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Wood, Prescott, & Redgrave, 2004; Humphries & Gurney,

2002). At lower levels of neurobiological detail we have

studied the patterning of signals encoded by trains of action

potentials (‘spikes’) (Humphries, 2002; Humphries &

Gurney, 2001), and have investigated biophysical models

of the membrane dynamics of striatal neurons (Wood,

Gurney, & Wilson, 2004). Studies at all of these levels have

generated complementary results confirming that the

biological architecture of the basal ganglia can operate as

an effective selection mechanism. In our view, however, this

computational neuroscience approach, in which specific

brain systems are modeled in isolation of the wider context,

still leaves many important questions unanswered. First, we

are left wondering how best to interpret the inputs and

outputs of the model—we might choose to think of inputs

as, say, ‘sensory’ signals, or of outputs as ‘motor’ signals,

but such assignments are essentially ungrounded. Second,

without locating a model within any wider context, we are

unable to judge whether it can fulfill its hypothesized

functional role within a more fully specified control

architecture. Third, without any linkage to sensory and

motor systems, we may question whether a model could

cope with noisy or ambiguous sense data, or as part of a

system challenged with coordinating the movements of real

effector systems. Finally, without the context of multiple

demands, such as the need to maintain physical integrity,

avoid threats, and discover and exploit resources, we will be

unsure whether or not a model can meet some of the basic

requirements for adaptive behavior. In this article we,

therefore, describe an embedding of the system-level model

of the basal ganglia and associated thalamocortical

connections within the control architecture of a small

mobile robot engaged in a simulated foraging task that

requires the robot to select appropriate actions under

changing sensory and motivational conditions and thereby

generate sequences of integrated behavior. We describe the

methodology we are applying as embodied computational

neuroscience. Preliminary results for the robot model have

been described in (Montes Gonzalez, Prescott, Gurney,

Humphries, & Redgrave, 2000), and a version of the model

has been shown to have better selection properties than a

standard winner-takes-all selection mechanism in a robotic

survival task (Girard, Cuzin, Guillot, Gurney, & Prescott,

2003). The current article, however, provides the first full

account of the robot embedding of the basal ganglia model

together with an extensive evaluation of the model’s

behavior in comparison to relevant neurobehavioral studies.

We also present results showing the behavior of the robot

model when faced with multiple high-salience alternatives,

and draw comparisons with studies of animal behavior in

conflict situations.

The remainder of the article is organized as follows. The

action selection hypothesis of the basal ganglia and related

modeling work is reviewed in Section 2. The motivation for

the robot basal ganglia model, full details of the robot

implementation, and a summary of action selection metrics,
are described in Section 3 (and the accompanying

appendices). Section 4 then describes the results of three

experiments: experiment 1, a systematic search of a salience

space using a disembodied version of the extended basal

ganglia model (extending earlier analyses of this model by

Humphries and Gurney, 2002); experiment 2, our main

investigation of the action selection by the robot basal

ganglia model; and experiment 3, an investigation of robot

behavior in the context of high salience alternatives. Section

5 provides our discussion of the experimental results

focusing on comparisons with biological data.
2. Background: the basal ganglia viewed as an action

selection device

There have been many excellent summaries of the

functional anatomy of the basal ganglia (e.g. Gerfen &

Wilson, 1996; Mink, 1996; Smith, Bevan, Shink, & Bolam,

1998), the following, therefore, focuses on those aspects

most relevant to understanding the models discussed below.

The principle structures of the rodent basal ganglia

(Fig. 1a) are the striatum (consisting of the caudate, the

putamen, and the ventral striatum), the subthalamic nucleus

(STN), the globus pallidus (GP), the substantia nigra (SN,

consisting of the pars reticulata SNr and pars compacta

SNc), and the entopeduncular nucleus (EP) (homologous to

the globus pallidus internal segment, or GPi, in primates).

These structures are massively interconnected and form a

functional sub-system within the wider brain architecture

(Fig. 1b).

The input nuclei of the basal ganglia are the striatum and

the STN. Afferent connections to both of these structures

originate from virtually the entire brain including cerebral

cortex, many parts of the brainstem (via the thalamus), and

the limbic system. These connections provide phasic

excitatory input. The main output nuclei are the substantia

nigra pars reticulata (SNr), and the entopeduncular nucleus

(EP). These structures provide extensively branched

efferents to the thalamus (which in turn project back to

the cerebral cortex), and to pre-motor areas of the midbrain

and brainstem. Most output projections are tonically active

and inhibitory.

To understand the intrinsic connectivity of the basal

ganglia it is important to recognize that the main projection

neurons from the striatum (medium spiny cells) form two

widely distributed populations differentiated by their

efferent connectivity and neurochemistry. One population

contains the neuropeptides substance P and dynorphin,

preferentially expresses the D1 subtype of dopamine

receptors, and projects primarily to the output nuclei (SNr

and EP). In the prevailing informal model of the basal

ganglia (Albin, Young, & Penney, 1989) this ‘D1 striatal’

projection constitutes the so-called direct pathway to the

output nuclei. Efferent activity from these neurons

suppresses the tonic inhibitory firing in the output structures
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Fig. 1. Basal ganglia anatomy of the rat: (a) internal pathways, (b) external pathways. Not all connections are shown. Abbreviations: STN, subthalamic nucleus;

EP, entopeduncular nucleus; GP, globus pallidus; SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata; D1; D2, striatal neurons

preferentially expressing dopamine receptors subtypes D1 and D2.
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which in turn disinhibits targets in the thalamus and

brainstem. A second population of striatal projection

neurons contains enkephalin and preferentially expresses

D2 subtype dopamine receptors. This group projects

primarily to the globus pallidus (GP) whose tonic inhibitory

outputs are directed both to the output nuclei (SNr and EP)

and to the STN. The inhibitory projection from these ‘D2

striatal’ neurons constitutes the first leg of an indirect

pathway to the output nuclei. Since this pathway has two

inhibitory links (Striatum-GP, GP-STN), followed by an

excitatory one (STN-EP/SNr), its net effect is to activate

output nuclei thereby increasing inhibitory control of the

thalamus and brainstem.

The main source of dopamine innervation to the striatum

is the substantia nigra pars compacta (SNc). Dopaminergic

modulation of basal ganglia is generally considered to act at

two time-scales (Grace, 1991; Walters, Ruskin, Allers, &

Bergstrom, 2000). One is a short-latency phasic response

(100 ms burst) that correlates with the onset of biologically

significant stimuli and appears to be critical for some forms

of incentive learning (Redgrave, Prescott, & Gurney, 1999b;

Schultz, Dayan, & Montague, 1997), the other is a tonic

level of activity (1–8 Hz) that is altered by various brain

pathologies, such as Parkinson’s disease, and in the normal

brain may be subject to modulation by structures such as the

frontal cortex. Interestingly, the D1 and D2 striatal

populations respond differently to variations in dopamin-

ergic transmission. Whilst a range of effects have been

reported, one simplifying hypothesis, that accounts for a

significant proportion of available findings, is that dopamine

enhances the effectiveness of other synaptic inputs when

acting via D1 receptors (Akkal, Burbaud, Audin, & Bioulac,

1996) whilst reducing such efficacy when acting at D2

receptors (Gerfen, Engber, Mahan, Susel, Chase and

Monsma, 1990; Harsing & Zigmond, 1997). This arrange-

ment seems to provide dopaminergic control of a ‘push/pull’
mechanism subserved by the direct (inhibitory) and indirect

(net excitatory) basal ganglia pathways. The effects of

variations in this tonic dopamine level on our robot model

are the subject of a separate article; in the current work we

report results in which the simulated dopamine level is fixed

at an intermediate level. Likewise, the current article does

not address the problem of learning (and the role of

dopamine therein), but the logically distinct question of

whether the basal ganglia are suitably configured to support

action selection in an embodied agent.

A key assumption of our basal ganglia model is that the

brain is processing, in parallel, a large number of sensory

and cognitive streams or channels, each one potentially

carrying a request for action to be taken. For effective

behavior, the majority of these requests must be suppressed

to allow the expression of only a limited number (perhaps

just one). This channel-based scheme is consistent with

evidence that basal ganglia input occurs via a series of

topographically organized, parallel processing streams

(Alexander & Crutcher, 1990). The action selection

hypothesis of the basal ganglia further suggests that the

activity of cell populations in the striatum and STN encodes

the salience, or propensity for selection, of candidate

actions. At the same time, the basal ganglia output

structures, SNr and EP, are viewed as gating candidate

actions via a reduction in their inhibitory output for winning

channels. When considered in isolation of the wider brain

architecture, this action selection thesis is best restated in

terms of the context-neutral problem of ‘signal selection’; in

other words, the proposal is that large signal inputs at

striatum and STN select for low signal outputs at EP/SNr.

From a signal selection perspective multiple mechanisms

within the basal ganglia and related circuitry appear to be

suitably configured to resolve conflicts between competing

channels and provide the required clean and rapid switching

between winners. Our initial system-level model of
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the basal ganglia (Gurney et al., 2001a,b) focused on the

following candidate selection mechanisms.

First, at the cellular level considerable interest has

focused on an intrinsic property of striatal projection

neurons such that, at any given moment, a majority of

cells are in an inactive ‘down-state’, and can only be

triggered into an active ‘up-state’ (where they can fire action

potentials) by a significant amount of coincident input

(Wilson & Kawaguchi, 1996). This bistable behavior could

act as a high-pass filter to exclude weakly supported

‘requests’.

Second, computational theory suggests that a feed-

forward, off-centre, on-surround network is an appropriate

mechanism for enhancing signal selection. In the basal

ganglia, this type of selection circuit appears to be

implemented by a combination of focused striatal inhibition

of the output nuclei (the off-centre) and diffuse STN

excitation of the same (the on-surround) (Parent & Hazrati,

1995). On closer examination, however, it appears that there

are actually two such feed-forward networks in the basal

ganglia intrinsic circuitry (see Fig. 2a and b), differentiated

by the projection targets of the D1-type and D2-type sub-

populations of striatal neurons. One instantiation (Fig. 2a)

makes use of EP/SNr as its ‘output layer’; since this is

clearly consistent with our signal selection hypothesis for

the basal ganglia we have designated this circuit the

selection pathway. However, there is also a second

implementation of the feed-forward architecture whose

target is the GP (Fig. 2b). Since the efferent connections of

the GP are confined to other basal ganglia nuclei it is not

immediately clear in what sense this second implementation

can contribute to the overall selection task. This question

can be resolved by supposing that this second sub-system

forms a control pathway that functions to regulate the

properties of the main selection mechanism. The control

signals emanating from GP are evident when the two sub-

systems are combined to give the overall functional

architecture shown in Fig. 2c.

In our original system-level model, we operationalized

the above circuit (Fig. 2c) as a multi-channel system where,
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Fig. 2. The basal ganglia viewed as an action selection mechanism. Abbreviations a

et al., 2001a,b) indicated the presence of two off-centre, on-surround, feed-forwar

and is designated the selection pathway, the second (b) targets GP and is designat

when the two sub-systems are combined to give the overall functional architectu
for every basal ganglia nucleus, the neural population

encoding each channel is simulated by a suitably configured

leaky integrator unit. Analytical and simulation studies

(Gurney et al., 2001a,b) conducted with this model

demonstrated that it has the capacity to support effective

switching between multiple competitors. In simulation, two

or more channels of the model were provided with afferent

input in the form of hand-crafted signals of different

amplitude. Results showed that the largest signal input

always generates the smallest signal output (thus showing

signal selection), and that the system rapidly switches from

a currently selected channel to a competing channel that

suddenly has a larger input. We were also able to generate

signal characteristics in the component circuits of our basal

ganglia model that follow similar temporal patterns to

single-unit recordings of neural firing in GP (Ryan & Clark,

1991) and SNr (Schultz, 1986).

Humphries and Gurney extended the original model of

intrinsic basal ganglia processing to include basal ganglia-

thalamocortical loops (Humphries & Gurney, 2002). This

work led to the proposal that the thalamic complex—the

ventro-lateral (VL) thalamus and thalamic-reticular nucleus

(TRN)—acts to provide additional selection-related

functionality. Specifically, as shown in Fig. 3, these circuits

can be understood as sub-serving two important roles. First,

disinhibition of VL thalamic targets by EP/SNr enables a

positive feedback loop whereby winning basal ganglia

channels can increase the activation of their own cortical

inputs. Second, the within- and between- channel connec-

tions between the TRN and the VL thalamus appear to

implement a distal lateral-inhibition network that serves to

increase the activity of the most strongly innervated channel

at the expense of its neighbors. In simulation, again with

hand-crafted signals, the additional selective functions of

these extra-basal ganglia mechanisms were found to

promote several desirable selection features including

cleaner switching between channels of closely matched

salience, and the ability to ignore transient salience

interrupts. Recently, we have also shown that the model

can accommodate new data on striato pallidal projections,
STN
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Control

Control signals

Diffuse excitation

GP

Striatum (D2)Striatum (D1)

s per Fig. 1. Our analysis of the basal ganglia intrinsic connectivity (Gurney
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re shown in Figure c.



Inhibition ExcitationDiffuse inhibition

SSC

MC

VL TRN

Thalamic complex

Cortex

EP/SNr

Stiratum

Basal ganglia

GP
STN

Fig. 3. The extended basal ganglia model of Humphries and Gurney (2002).

Abbreviations: SSC, somatosensory cortex; MC, motor cortex; VL, ventro-

lateral thalamus; TRN, thalamic-reticular nucleus, others as per Fig. 1.

Connectivity within the basal ganglia component of the model is as shown

in Fig. 2c. Basal ganglia-thalamocortical loops can be understood as

providing additional mechanisms that can contribute to effective action

selection. First, the removal of basal ganglia inhibition from VL completes

a positive feedback loop to the motor cortex. Second, the diffuse inhibitory

connections from TRN to VL, which are stronger between channels than

within channels (as indicated by the plain and dotted inhibitory connections

in the figure), together with within-channel excitation from VL to TRN,

produces a form of mutual inhibition between channels. See text and

Humphries and Gurney (2002) for further explanation.
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and on local inhibitory connections within the globus

pallidus and substantia nigra (Gurney, Humphries et al.,

2004; Humphries, Prescott, & Gurney, 2003). Both

extensions also appear to enhance the selectivity of the

system and, in adding further biological realism, lend

further support to the selection hypothesis of basal ganglia

function.

An effective action selection mechanism should be

sensitive to changes in salience weightings that alter the

relative urgency of competing behaviors in a given context.

It is less evident, however, how a selection mechanism

should respond to changes in salience weightings that leave

relative salience unchanged whilst scaling the overall level

of the selection competition. The assumption encapsulated

by the widely used winner-takes-all selection mechanism,

for example, is that the overall level of salience is irrelevant

(the competitor with highest salience is always preferred).

We have previously demonstrated that the selection proper-

ties of both the intrinsic (Gurney et al., 2001b) and extended

(Humphries and Gurney, 2002) basal ganglia models do not

conform to this assumption, but instead, vary according to

the overall ‘intensity’ of the selection competition. We will

extend this work below by showing that that the degree of

hysteresis, or persistence, of the winning sub-system may

change as a consequence of changes in the overall level of

salience. Our previous studies noted interesting patterns of

‘multiple channel’ selection when the model is presented
with multiple, high salience alternatives. We, therefore,

investigate the behavior of the robot model in these

circumstances, and consider possible parallels with obser-

vations derived from ethological studies of behavioral

conflict.
3. Developing a robot model of action selection

by the basal ganglia

The modeling work considered above serves to demon-

strate signal selection by the basal ganglia rather than action

selection per se. To show convincingly that the basal ganglia

model is able to operate as an effective action selection

device we believe it needs to be embedded in a real-time

sensorimotor interaction with the physical world. An

important goal has, therefore, been to construct an

embedded basal ganglia model in which selection occurs

between multiple, physically realized behaviors in a mobile

robot. Since the use of robotics in computational neuro-

science is relatively new, we preface our description of this

model with a brief explanation of how we approach this task

of embedding a computational neuroscience model within a

robot architecture that generates observable behavior.
3.1. A methodology for embodied computational

neuroscience

Any computational neuroscience model, robotic or

otherwise, is composed of components that are ‘biomi-

metic’—that is, they are intended to directly simulate

neurobiological processes (at some appropriate level), and

those that are merely ‘engineered’ so as to provide an

interface that will allow the model to be interrogated and

evaluated. The need for engineered components is particu-

larly obvious in the case of robotic models where

simulations of neural circuits must, at some point, be

interfaced with (usually) very-non-neural robot hardware.

Furthermore, in models that seek to simulate complete

behavioural competences it is also generally impractical,

because of the scale of the task, or impossible, because of

the lack of the necessary neurobiological data, to simulate

all components of the neural substrate for the target

competence at a given level of detail. In this situation,

engineered components are also required to substitute for

the function of some of the neural circuits, known or non-

known, that are involved in the production of that

competence in an animal. In the current model, since

the biological substrate of interest is the basal ganglia, the

system components that provide the interface between the

robot hardware (and low-level controllers) and the models

of the basal ganglia and related nuclei have been constructed

as a set of engineered sub-systems that we collectively

denote as the embedding architecture. While broadly

‘biologically inspired’, we would stress that this embedding



Fig. 4. The behavior of an adult rat in a square arena with a shaded nest area

(top right) and central food resource (top) has provided the inspiration for

the task setting investigated in the robot model of action selection by the

basal ganglia (bottom).
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architecture is not intended to directly mimic any specific

neural substrate.

Latimer (1995) has identified the presence of two such

distinct types of model components as a universal

characteristic of Cognitive Science research. In his

terminology, components that are intended to be biomimetic

are said to be ‘theory-relevant’, and those that simply make

the model useable are ‘theory-irrelevant’. In fact, Latimer

makes this distinction only to immediately deconstruct it!

‘Theory relevance’, after all, is largely in the eye of the

beholder, and what, to one researcher, is a theory-irrelevant

assumption made to get the simulation running, is to a critic,

an unjustified fix on which the results of the model critically

depend. Such issues have, for example, provided an

important line of attack for detractors of connectionist

models of psychological processes (see, e.g. Massaro, 1988;

Pinker & Prince, 1988). Furthermore, whether a particular

component of a model is deemed to be ‘theory-relevant’ or

not, can depend as much on what hypothesis is being tested

as on the nature of the model itself. Thus, whilst we would

argue here that the specific details of how (robotic) motor

behaviour is implemented is not relevant from the

standpoint of the action selection hypothesis of basal

ganglia function, such details would become relevant if

the same model were to be evaluated as a theory of a

complete sensorimotor loop.

Since the use of engineered components is unavoidable

in Cognitive Science, but their ‘theory-irrelevance’ cannot

be taken for granted, it is important: (i) that these elements

of a model are described in sufficient detail to allow their

evaluation and replication, (ii) that the interface with the

inputs and outputs of the biomimetic components respects

important biological constraints; and (iii) that where

engineered components turn-out to have significant beha-

vioural or functional consequences (i.e. are potentially

theory-relevant) these are explored and, where possible,

related to functional properties of relevant neural systems.

In this article, we attempt all three tasks. First, in the

remainder of this section, and in the appendices, we give a

full description of the embedding architecture and demon-

strate that, at a functional level, the decomposition of this

architecture into behaviour-related (action) sub-systems is

consistent with ethological evidence. Second, in Section 2

(above), we reviewed evidence justifying our general

assumption that the inputs to the basal ganglia inputs

encode action salience, and that its outputs act as gating

signals that suppress undesired motor acts (we also revisit

these issues in Section 5). Third, in Section 5.2, we will

consider whether there are possible neural correlates for

specific components of the embedding architecture that

have significant functional consequences.

3.2. A model task

To evaluate the action selection properties of the

embodied basal ganglia model requires an
environment/task-setting complex enough to present inter-

esting competitions between alternative behavior systems,

yet simple enough to establish base-line levels of

performance and to allow detailed analyses of the resulting

patterns of behavior switching. In developing a task to meet

these needs we were inspired by observing the behavior-

switching of food-deprived rats placed in an unfamiliar

rectangular arena containing a centrally located dish of food

pellets (see Fig. 4, top). The initial behavior of such animals

is typically exploratory, defensive, and characterized by

avoidance of open space. Animals placed in the centre of the

arena quickly move to the periphery, then tend to stay close

to the arena walls, showing a preference for the corners of

the arena, and little or no visible interest in food

consumption. As the animal becomes more accustomed to

the novel environment, hunger-related behaviors become

more apparent. A common ‘foraging’ behavior being to

locate the food dish, collect a food-pellet, and carry it back

to a ‘nest’ corner of the arena (identified by the presence of

bedding material) to be consumed. The balance between

locomotion, feeding, and resting is of course sensitive to the

level of hunger of the animal and its familiarity with the

arena.

Our efforts to create a setting in which to test the

embedded basal ganglia model have focused on producing
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a similar, if much simplified, problem setting for a small

mobile robot. The robot is placed in a walled, square arena

(55!55 cm2) containing a number of small cylindrical

objects (see Fig. 4, bottom). The cylinders substitute for

food pellets, so the collection and consumption of food is

modeled by collecting cylinders and depositing them in a

‘nest’ corner of the arena. The ‘nest’ is identified by the

presence of a local light source (an 8v filament bulb) of

which there are two, placed in diagonally opposite corners.

Simulated motivations are used to modulate the robot’s

inclination to avoid open space (‘fear’), and to collect

cylinders (‘hunger’) through the time-course of each

experiment.

3.3. The robot control architecture

The full robot control architecture is illustrated in Fig. 5,

and the following sub-sections, together with the appen-

dices, provide a full description the various components of

this architecture. Fig. 5 distinguishes: (i) the robot and the

primitive sensory and motor systems available to it, (ii) the

embedding architecture that provides a repertoire of action

(behavioral) sub-systems, computes their relative salience,

and combines their outputs subject to gating by the basal

ganglia, and (iii) the extended basal ganglia model that

provides the substrate for resolving action selection

conflicts. As noted above, it is only this third element of

the model that aspires to mimic specific aspects of

vertebrate brain function. Other components of the

architecture that are included to satisfy the requirements

for a working control system do, however, provide useful

hypotheses concerning the embedding of the basal ganglia
Sa
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(i) Robot (ii) Embedding architecture
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within the wider brain architecture, and we return to this

issue in the discussion.

The robot control architecture has a large number of free

parameters, that specify, for instance, the timings of sub-

elements of behavior patterns (Section 3.3.2) and the

weightings for action ‘salience’ calculations (Section

3.3.3). We have opted to use hand-tuned parameters

throughout, as the free parameters in the embedding

architecture do not need to be optimal but simply adequate

to generate desired behaviour. This practise is consistent

with much of the existing research on action selection where

hand-coded systems are frequently employed (Maes, 1995).

From the point of view of robot control, the capacity to learn

from experience would clearly make our architecture more

adaptive, however, the goal of the current study is limited to

investigating the selection capabilities of an embodied basal

ganglia model, so optimization of the embedding archi-

tecture is not a critical requirement.

3.3.1. The robot sensory and motor systems

The Kheperae I is a small cylindrical robot, 60 mm in

diameter, with two driven wheels and a detachable gripper

arm. The robot senses the environment through an array of

eight peripheral sensors, which can operate in both an

active mode, as an infra-red proximity sense, and in a

passive mode as an ambient light sense. In active mode, the

sensor array has a very limited range, reliably detecting

nearby vertical surfaces no further than 25 mm away. In

this respect, it is somewhat analogous to a biological tactile

sensory system, such as the rat vibrissae. In addition, the

robot has a positional sensor on the gripper arm to

determine whether it is currently raised or lowered, and
lience
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a binary-valued optical sensor that detects whether there is

an object between the gripper jaws. Further details of the

robot sensory systems are given in Appendix A. The two

wheel motors can be independently driven forwards or

backwards, and the gripper turret is powered by two

motors, one to lift/lower the arm, the other to open/close

the gripper. Further details of the motor systems are given

in Appendix D. A serial link, controlled by Webots 2.0

robot interface software, is used to send sensor readings to,

and receive motor commands from, the computer hosting

the embedding architecture and basal ganglia model. This

interface operates on a series of discrete time-steps

providing updates at a rate of approximately 7 Hz. For

convenience of notation, indexing according to the current

‘robot time-step’ is assumed in the following account of

the embedding architecture (note, however, that the

embedded basal ganglia model has a different intrinsic

time-step as explained in Section 3.3.4 below).

3.3.2. The embedding architecture—action sub-systems

The control architecture of the robot includes five

behaviors, or action sub-systems, which it can switch

between at any time. These are: searching for cylinders

(cylinder-seek or Cs), picking up a cylinder (cylinder-

pickup, Cp), looking for a wall (wall-seek, Ws), following

alongside a wall (wall-follow, Wf), and depositing the

cylinder in a corner (cylinder-deposit, Cd). Each action sub-

system operates independently to compute a stream of

output signals that are directed toward the robot motor

systems. So, for instance, cylinder-seek uses the infra-red

proximity sense to detect nearby surfaces and to discrimi-

nate objects that are likely to be cylinders from other

contours such as walls, and generates motor outputs that

specify movement towards or away from the stimulus object

as appropriate.

Our decomposition of robot activity into these five sub-

systems is inspired by the ethological classification of

behavior. Each action sub-system consists of a set of

condition-action mappings, and three of the five action

sub-systems—cylinder-seek, wall-seek, and wall-follow—

map patterns of input from the peripheral sensor array into

movements that orient the robot towards or away from

specific types of stimuli (e.g. object contours). These

behaviors can be viewed as belonging to the ethological

category of orienting responses or taxes (see, e.g. Hinde,

1966). The two remaining sub-systems—cylinder-pickup

and cylinder-deposit—generate stereotyped, and carefully

timed, patterns of movement modeled on the ethological

concept of a fixed action pattern (FAP). As originally

defined by Lorenz (1935), FAPs are species-specific,

instinctive responses to specific patterns of stimulation.

Although a FAP may describe a complex spatio-temporal

pattern of movement, a distinctive feature is that, once

elicited, the overall form of the pattern (though not the

parameters of specific motor elements) is uninfluenced by

further external cues (Colgan, 1989). Perhaps the best
known example of a FAP is the pattern for egg-retrieval,

displayed by many ground-nesting birds, which has been

described as having three sequential elements (Hinde,

1966; Tinbergen, 1951): (i) stand up, (ii) place the bill

beyond the egg, (iii) roll the egg back into the nest

(moving the bill from side-to-side to prevent the egg from

slipping). By comparison, the fixed action pattern for

cylinder-pickup in the robot model constitutes five

sequential elements: (i) slowly approach the cylinder (to

ensure correct identification and good alignment for

pickup), (ii) back away (to allow room to lower the

arm) whilst opening the gripper, (iii) lower the arm to

floor level, (iv) close the gripper (hopefully around the

cylinder), (v) return the arm to vertical. The term ‘fixed

action pattern’ has been criticized within ethology for

over-emphasizing the stereotyped and instinctive nature of

the resulting behavior—‘modal action pattern’ (Barlow,

1977; Colgan, 1989) is, therefore, sometimes preferred.

We have used the original term here both because our

robot implementation of FAPs is consistent with Lorenz’s

definition, and because researchers in neuroethology have

continued to find this a useful concept (Casseday &

Covey, 1996; Ewert, 1987; Hoyle, 1984; McFarland &

Bosser, 1993; Toates, 1998).

Whilst an action pattern may, in general, exploit sensory

or proprioceptive data to shape ongoing motor output, some

FAPs are held to be ballistic in nature (Ewert, 1987; Hinde,

1966), suggesting the involvement of intrinsic pattern-

generating mechanisms. In the robot model, the relative

paucity of appropriate sensory data has led us to investigate

the use of such intrinsic patterning to regulate sequencing

within a FAP. Specifically, the timing of the sub-elements of

a pattern are determined relative to the state of an internal

clock (C in Fig. 5) and the full behavior is implemented as a

set of mappings from elapsed time, as recorded by this

clock, to specified patterns of motor output. Given that the

spatiotemporal organization of the robot FAP is regulated

solely by this intrinsic time signal, a critical issue is how the

sub-system clock is itself controlled. Our architecture here

assigns an important role to the output of the basal ganglia

by making the state of the clock depend upon thalamocor-

tical feedback. Specifically, the sub-system clock is enabled

(non-zero) only if there is a non-zero feedback signal from

the VL thalamus in the relevant basal ganglia channel

(indicated by the symbol f in Fig. 5). Since this aspect of the

embedding architecture has a significant functional role (i.e.

is potentially ‘theory-relevant’ with respect to the action

selection hypothesis) we will consider evidence of a role for

the basal ganglia in behavioural timing in our discussion

(Section 5.2.2).

We designate v to be the vector generated by any given

action sub-system that encodes its current motor output.

To be effectively gated by the basal ganglia we require

that all elements of v are positively valued and lie in the

interval [0,1], and to interface with the Khepera robot we

make v a nine-element vector containing a distributed
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coding of the target left- and right- wheel-speeds (two

elements each), arm-position (three elements), and

gripper-position (two elements). Further details of this

motor encoding scheme are given in Appendix B, which

also provides a full description of the condition-action

mappings implemented by each of the action sub-systems.
Fig. 6. Elements of robot behavior in the simulated foraging task: (a) wall-se

(carrying a cylinder), (f) wall-follow (again carrying a cylinder), (g and h) cy
The elements of the robot’s behavioral repertoire are

illustrated in Fig. 6.

3.3.3. The embedding architecture—determining salience

A centralized action selection system requires mech-

anisms that can assimilate relevant perceptual,
ek, (b) wall-follow, (c) cylinder-seek, (d) cylinder-pickup, (e) wall-seek

linder-deposit.
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motivational, and contextual signals to determine, in some

form of ‘common currency’ the relative salience or

urgency of each competing behavior (McFarland, 1989;

Redgrave et al., 1999a). In the embedding architecture of

our model, at each time-step, a salience value for each

action sub-system is calculated as a weighted sum of

relevant perceptual and motivational variables, and may

also be dependant on the current activity status of the

action sub-system itself. Each of these contributions to the

salience calculation is briefly described below.

As ethologists have noted, the perceptual stimuli that

give rise to a behavioral selection, often termed sign

stimuli, are often quite different from those that are used

to control the execution of the selected behavior (Colgan,

1989; Ewert, 1987). Sign stimuli, generally, indicate the

presence (or absence) in the immediate environment of

the relevant affordances for different behaviors. In the

robot model, these values are computed by perceptual

sub-systems from the raw sensory data available to the

robot and generate four bipolar signals indicating: the

presence (C1) or absence (K1) of a nearby wall (pwall),

nest (pnest), or cylinder (pcyl), or of an object in the robot

gripper (pgrip).

An action selection mechanism also requires infor-

mation about intrinsic state, indicating, for example, the

current level of energy reserves (McFarland, 1989;

McFarland & Bosser, 1993). In the current model, two

simple intrinsic drives, loosely analogous to ‘hunger’ and

‘fear’, are calculated by two motivational sub-systems.

‘Fear’ (mfear) is calculated as a function of exposure to the

environment and is reduced with time spent in the

environment, whilst ‘hunger’ (mhung) gradually increases

with time and is reduced when cylinders are deposited in

the nest corners of the arena. Further details of the

calculation of the perceptual and motivational variables

are given in Appendix C.

In addition to perceptual and motivational input our

model allows an action sub-system to contribute to its

own salience computation by generating a signal

indicating the urgency or importance attached to

completing an ongoing task. We have adopted the term

busy signal to describe a contribution to the weighted

salience calculation that encodes this aspect of the activity

status of an action sub-system (indicated by the symbol b

in Fig. 5). In the robot model, such signals provide

contributions to the salience calculations for three sub-

systems. In cylinder-pickup a busy signal, bpick, boosts the

sub-system salience while the robot backs-up in order to

grasp a target cylinder (the robot is generally unable to

detect the cylinder during this maneuver), the busy signal

then continues after the cylinder is grasped and until the

robot arm is returned to a safe, vertical position. The role

of the signal is to compensate for the salience changes

that occur as the perceptual variables pcyl (cylinder

detection) pgrip (gripper status) switch sign during the

task. In a similar fashion, cylinder-deposit uses a busy
signal, bdep, to boost its salience after the cylinder has

been released and until the robot arm is returned to

vertical. Finally, wall-follow, generates a signal, bfoll, if a

nearby surface is detected by only one of its six proximity

sensors. In this situation the wall percept, pwall, often has

a negative value (since there is insufficient sensory input

to reliably identify a wall), so the signal encourages wall-

following to be sustained until an unambiguous percept of

the wall is regained or the robot loses track of the surface

altogether. Full details of when each of these busy signals

is generated are given in Appendix B. Some possible

neural correlates of such signals are considered in Section

5.2.1.

The overall salience si for the ith action sub-system is a

linear weighted sum (including a threshold term) of relevant

perceptual and motivational variables and the busy signal

(if required) for that sub-system. The weights given below

were selected by hand to provide closely matched action

selection competitions, then ‘tuned’ whilst observing the

robot until the appropriate and opportunistic action selection

was observed:

cylinder � seek : s1 Z sseek

ZK0:12pcylK0:12pgripK0:06mfear C0:45mhung

cylinder � pickup : s2 Z spick

Z 0:21pcylK0:15pgripK0:18mfear C0:18mhung

C0:78bpick C0:25

wall � seek : s3 Z swall

ZK0:12pwall C0:14pgrip C0:18mfear C0:25

wall � follow : s4 Z sfoll

Z 0:12pwall C0:14pgrip C0:21pfear C0:25bfoll C0:25

cylinder � deposit : s5 Z sdep

Z 0:33pnest C0:33pgrip C0:18mhung C0:40bdep C0:13

These salience signals form the input to the model basal

ganglia to which we turn next. The elements of the

embedding architecture responsible for interfacing basal

ganglia outputs with the motor system are then described in

Section 3.3.5.

3.3.4. The extended basal ganglia model—a biomimetic

substrate for action selection

In the robot, the task for the basal ganglia model is to

arbitrate at each time-step between the five available

action sub-systems and to generate a pattern of action

selection over time that results in coherent sequences of

behavior. For the experiments reported below, we used the

model of basal ganglia intrinsic circuits described by
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Gurney et al. (2001a,b) extended to include the models of

VL thalamus and the thalamic reticular nucleus as

described by Humphries and Gurney (2002). The full

functional architecture of the model, therefore, combines

the elements in Figs. 2c and 3.

In a living animal, the activity of the brain and of the

body both unfold in continuous time, therefore, the ideal

scenario for modeling would be to simulate both neural

processes and behavioral processes at the same, high

temporal rate. Unfortunately, the current robot model

presents a problem in that the sense-act cycle operates in

discrete steps at the relatively sedate pace of approxi-

mately 7 Hz. This raises the issue of how we relate the

update rate of the basal ganglia model to that of the robot.

In this study, we have chosen not to enforce a specific,

fixed mapping between the two update cycles, as this

could lead to artifacts caused by the intermittent sampling

of basal ganglia activity at non-equilibrium values.

Instead, we have opted to run the basal ganglia model

to convergence at each robot time-step. Clearly, by

allowing only equilibrium basal ganglia states to influence

motor output we lose the opportunity to observe the

behavioral consequences of basal ganglia dynamics at

high temporal rates, a topic that merits future investi-

gation in its own right.

For convenience, a brief summary of the full basal

ganglia model is provided next; the reader is referred to

Gurney et al. (2001a,b) and Humphries and Gurney (2002)

for a detailed justification of its form.

The standard leaky integrator unit used throughout model

is defined as follows. Let a be the unit activation and u be

the net input (or total post-synaptic potential) generated by

the afferent input to the unit. Given a rate constant k

(corresponding to the cell membrane capacitance and

resistance) _aZda=dt is given by:

_aZKkðaKuÞ (1)

The output y of the unit, which corresponding to the

mean firing rate, is bounded below by 0 and above by 1, and

is given by the piecewise linear function:

yZ Lða; qÞZ

0; a!q

ðaKqÞ; q%a%1=ð1CqÞ

1; aO ð1CqÞ

:

8><
>: (2)

Note that q is the threshold below which any value

outputs zero—a negative threshold value, therefore,

indicates tonic activation, whilst a positive value indicates

resistance to synaptic input.

The following equations specify the net input ui and

output yi for the ith channel in each component of the

model. The net input ui is computed using the outputs yi
of other components of the model except for the model

somatosensory cortex where it is equal to the current

salience input, si, for that channel (see Section 3.3.3).

Dopamine modulation of the model is provided by
introducing a multiplicative factor in the equations

specifying afferent input to the striatum—in striatal D1

channels where dopamine modulation increases synaptic

efficacy the effective weight is (1Cl) where 0%l%1, in

D2 channels, where the effect is to reduce efficacy, the

weight is (1Kl). All parameter and threshold values are

the same as those used in Gurney et al. (2001a,b) and

Humphries and Gurney (2002), except the weighting of

the inputs from the TRN to the VL thalamus1. Note that,

since the architecture forms a continuous loop, definition

of the net input for the motor cortex requires the output of

VL thalamus ðyvl
i Þ defined later in the list. All other values

are defined consecutively:

Somatosensory cortexðsscÞ : ussc
i Zsi; yssc

i ZLðassc
i ;0:0Þ:

(3)

Motor cortexðmcÞ : umc
i ZysscCyvl

i ; ymc
i ZLðamc

i ;0:0Þ:

Striatum D1ðd1Þ : ud1
i Z ð1ClÞ1=2ðyssc

i Cymc
i Þ;

yd1
i ZLðad1

i ;0:2Þ:

Striatum D2ðd2Þ : ud2
i Z ð1KlÞ1=2ðyssc

i Cymc
i Þ;

yd2
i ZLðad2

i ;0:2Þ:

Subthalamic nucleusðstnÞ : ustn
i Z1=2ðyssc

i Cymc
i ÞKy

gp
i ;

ystn
i ZLðastn

i ;K0:25Þ:

Globus pallidusðgpÞ : u
gp
i Z0:9

X
i

ystn
i Kyd2

i ;

y
gp
i ZLða

gp
i ;K0:2Þ:

EP=SNrðsnrÞ : usnr
i Z0:9

X
i

ystn
i Kyd1

i K0:3y
gp
i ;

ysnr
i ZLðasnr

i ;K0:2Þ:

VL ThalamusðvlÞ :

uvl
i Zymc

i Kysnr
i K 0:125ytrn

i C0:4
X
jsi

ytrn
j

 !
;

yvl
i ZLðavl

i ;0:0Þ:

Thalamic reticular nucleus ðtrnÞ :

utrn
i Zymc

i Cyvl
i K0:2ysnr

i ; ytrn
i ZLðatrn

i ;0:0Þ:
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In the robot implementation, the time-course of the

basal ganglia model is simulated using a Euler solution2

to Eq. (1):

DaiðtÞZKkðaiðtK1ÞKuiðtÞÞDt;aiðtÞZaiðtÞCDaiðtÞ: (4)

Hence the net input ui(t) is calculated using the outputs

yi(tK1) of other model components from the previous

iteration step and the salience si which is fixed for the

current robot time-step (and therefore throughout conver-

gence). The output yi(t) is obtained by substituting ai(t) in

Eq. (2) with the appropriate threshold. A rate constant kZ
25, and step-size DtZ0.012 were used in the experiments

reported here, and the model was considered to have

converged whenever the smallest Da on two consecutive

time-steps was less than 0.0001.

Previous studies (Gurney et al, 2001b; Humphries and

Gurney, 2002) have established that the basal ganglia model

shows good selection properties, across a wide-range of

salience pairings, with the simulated dopamine level set at

lZ0.2. This value was, therefore, used in all this

experiments described in the current article; the conse-

quences of variation of the simulated dopamine level will be

investigated in detail in a separate article.

3.3.5. The embedding architecture—gating motor output

The output of the model basal ganglia gates the motor

vector produced by each action sub-system by reducing

or increasing the inhibition on the corresponding motor

pathway. This is implemented in our embedding

architecture using a gating signal e generated using a

shunting inhibition mechanism (labeled SI in Fig. 5)

defined such that, for the ith action sub-system, ei
(0%ei%1) is given by:

ei Z Lð1Kysnr
i =ysnr

tc ; 0:0Þ: (5)

Here ysnr
tc is a constant equal to the tonic output of EP/

SNr obtained when the model is run to convergence with

zero salience input on all channels. For the parameters of

the basal ganglia model listed above ysnr
tc Z0:169. Our

model assumes that this level of basal ganglia output

provides complete inhibition of target structures, and that

disinhibition of targets begins when the output falls

below ysnr
tc , increases linearly with decreasing output, and

is maximal when the output reaches zero. Since this

element of the embedding architecture mediates the

effects of basal ganglia output on the motor system it
2 The Euler method is known to have stability problems if the time-step

chosen is too large. However, with a small enough time-step it is

sufficiently accurate and less computationally expensive than some other

methods (an important consideration in developing robot models that must

make decisions in finite time). In the light of the known stability issues our

algorithm was extensively tested to ensure that the time-step chosen was

small enough to avoid stability issues. The behaviour of the model used in

the robot was also tested on several benchmark runs against a simulation,

implemented in Simulinke, using a fixed-step Dormand–Prince (5th order)

solver with a time-step of 0.01 and the outputs were found to be equivalent.
plays a ‘theory-relevant’ role in our model. We will,

therefore, consider evidence, in Section 5.2.3, that basal

ganglia output to motor and pre-motor systems may also

have a gating effect similar to shunting inhibition.

The gated motor outputs of all action sub-systems are

summed over all channels and the result passed through a

further limiter to give the aggregate vector:

v̂Z L
X
i

eivi; 0:0

 !
: (6)

Finally, the motor plant maps the vector v̂ into motor

commands that can be understood by the robot, details of

this mapping are given in Appendix B.

Note that the aggregate motor vector expresses target

values for the motor state, that is, target wheel-speeds,

gripper-arm elevation, and gripper-jaw position. In the

event of full basal ganglia inhibition of all channels, this

aggregate command will have zero value and the robot will

freeze in its current position. In the event that one or more

channels is partially (but not fully) disinhibited, the robot

will act but its movements may be slowed by the resulting

reduction in the size of the motor signals. Finally, note that

the motor signal generated by any losing behavior that is not

fully inhibited by the basal ganglia will be combined with

that of the winner. This mechanism allows for the possibility

of distortion (the robot tries to do two things at once) in the

event of ineffective suppression of competitors by the basal

ganglia.
3.3.6. Time course of the robot model

To make clear the relationship between the update cycle

of the robot, the embedding architecture, and the basal

ganglia model, the activity in the embodied model occurring

in one robot time-step can be summarized as follows:

(i) Enact the robot’s current aggregate motor command

v̂ and obtain new sensor data.

(ii) For each action sub-system i update the salience si
and generate a new motor vector vi.

(iii) Run the basal ganglia model to convergence.

(iv) Using the output, ysnr
i , of the converged basal ganglia

model generate the gating signal ei and compute a

new aggregate motor command v̂.

(v) Using the output of the VL thalamus, yvli , enable or

disable the sub-system clock of any sub-system that

implements a fixed action pattern.

For the embedded basal ganglia model, the activation

values of all leaky integrator units at convergence are

retained as the starting values for the next time-step.

This allows for the possibility of hysteresis across robot

time-steps and has potentially important consequences for

behavior.
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3.4. Action selection metrics

To assist the presentation of the model results it is helpful

to define a number of terms to describe the outcomes of

action selection competitions.

First, we note that the gating signal ei, defined in Eq. (5),

provides a useful normalized measure of selection by the

embedded basal ganglia model. In evaluating the perform-

ance of the model we will, therefore, use ei as a measure of

the efficiency with which the motor output of the ith action

sub-system is transmitted to the motor resource. Allowing a

5% margin from absolute limits, we define the selection

state of the ith competitor as fully selected if 0.95%ei%1,

partially selected if 0.05%ei!0.95, and unselected if

ei!0.05.

It is helpful to have specific metrics relating to the

winning sub-system, hence, we define

ew Zmaxciei (7)

as the efficiency of the winner(s) in the current robot time-

step, and

dw Z
2
P

i eiKew

� �P
i ei

(8)

to be the level of distortion affecting the output of the

winner(s). Note that dw will equal zero when all other

competitors have zero efficiency, will increase with the

number of partially disinhibited losers, and will be 1.0 or

greater if two or more channels are fully disinhibited.

Finally, inspired by ethological research (Lehner, 1996), we

describe an uninterrupted series of time-steps that share the

same winner(s), and for which ews0, as a single bout of

behavior.

The result of the basal ganglia selection competition,

as a whole, can be described by the vector e. Using the

criteria just defined for single competitors we assign the

following labels to the possible outcomes of the full

competition:

Clean selection. One competitor fully selected, all

others unselected.

Partial selection. One or more competitors partially

selected, no competitor fully selected.

Distorted selection. One competitor only fully

selected, at least one other partially selected.

Multiple selection. Two or more competitors fully

selected.

No selection. All competitors unselected.
4. Experiments

Three experiments were performed using the basal

ganglia model. Experiment 1 (Section 4.1) was designed

to aid the interpretation of the behavior of the robot
model and employed a systematic search of a salience

space using a disembodied version of the extended basal

ganglia model. Experiment 2 (Section 4.2) was our main

investigation of a robot model implemented using the

hand-tuned salience inputs described in Section 3.3.3.

Experiment 3 (Section 4.3) investigated the behavioral

consequences of using multiple, high salience inputs in

the robot model.

4.1. Experiment 1—selection properties of the disembodied

model

4.1.1. Method

To provide a framework for interpreting the behavior of

the robot model, we performed a systematic search of a

salience space using a disembodied version of the extended

basal ganglia model. Specifically, we simulated a five-

channel model, with two active channels, varying the

salience s1 in channel 1 systematically from 0 to 1 in steps of

0.01, then for each value of channel 1 salience, varying the

salience s2 of channel 2 from 0 through 1, again in steps of

0.01. For each resulting salience vector (s1,s2,0,0,0) the

model was run to convergence and the result classified

according to the scheme set out in Section 3.4. Importantly,

selection competitions were run in sequence from low

values to high values. The activations levels of all leaky

integrators in the model were initialized to zero for each

new value of s1 but thereafter, while that salience value was

tested, were retained from one competition to the next. In

other words, we simulated the situation where channel 1 was

initially the only active channel, and gradually increased

channel 2 while holding channel 1 constant, the goal being

to simulate some aspects of the continuity of experience of

the robot model in which the recent history of basal ganglia

selection competitions may influence the current compe-

tition through hysteresis.

4.1.2. Results

The disembodied model displayed a high-proportion of

clean selections (79%), with some partial selections (17%).

Reduced selection efficiency and distortion occurred only

for evenly matched, high salience competitions. The model

also showed evidence of hysteresis that varied with salience

intensity.

The state-space search described above resulted in 10,000

(100!100) salience competitions of which 78.6% resulted

in clean selection, 16.7% in partial selection, 4.3% in no

selection, 0.3% in distorted selection, and 0% in multiple

selection. Some further results from this analysis are shown

in Fig. 7. In the upper graph, we show the efficiency, ew, of the

winning channel for each salience competition plotted in the

(s1,s2) plane, and below this the equivalent plot for distortion,

dw, of the winning channel. Progressively lighter shading

indicates, respectively, increasing efficiency (top) and

decreasing distortion (bottom). The dotted line in the upper

graph also indicates the boundary below which the selection
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Fig. 7. Efficiency (top) and distortion (bottom) in the winning channel, for a

systematic salience-space search with two active channels. Progressively

lighter shades show higher efficiency (top) or reduced distortion (bottom).

The salience space was sampled at a resolution of 0.01. For each salience

value of channel 1, channel 2 began at 0 and increased gradually. The

model was re-initialized only when a new channel 1 value was selected thus

allowing the possibility of hysteresis. The dotted line in the upper graph

indicates the boundary below which the selection competition was resolved

in favor of channel 1.
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competition was resolved in favor of channel 1 (i.e. channel 1

efficiency exceeds that of channel 2). Several properties of

Fig. 7 are worthy of comment. First there was high efficiency,

minimal distortion, and hence clean selection, across most of

the state space. Second, there was no selection only for very

low salience pairings. Third, there was reduced efficiency of

selection and significant distortion for strong, evenly

matched, salience values (s1,s2O0.6), resulting in partial

selection in this area of the state-space. Finally, we note that

the model showed significant hysteresis (as indicated by the

dotted line in the upper graph). In particular, a salience value

between 0.2 and 0.6 in channel 1 was able to resist a ‘rising

tide’ of channel 2 salience until the latter was substantially
stronger in numerical terms. Furthermore, changes in the

overall intensity of the salience competition resulted in

different levels of hysteresis, with the effect most pronounced

at intermediate levels of salience.

4.2. Experiment 2—the robot basal ganglia

4.2.1. Method

The robot was tested for five trials, each lasting 300 s

(2000 robot time-steps), with all parameters of the model as

described in Section 3.3. The experimental procedure was as

follows. At the start of each trial the robot was placed in the

centre of the arena (see Fig. 4) facing one of the four walls,

with four cylinders placed 18 cm diagonally in from each

corner. All motor outputs were initially set to zero, and

the basal ganglia model run to convergence with zero

salience on all channels. For each trial automatic logs were

generated detailing the robot’s sensory, motivational, and

basal ganglia state, at each robot time-step, and the overall

bout structure of its behavioral selections. Most trials were

also recorded in digital video, using a camera positioned

approximately 1 m above the arena, to allow detailed

examination of the robot’s behavior and its interaction with

objects and surfaces in the environment.

4.2.2. Results

In the following we describe: (i) the general selection

properties of the robot model, (ii) the intrinsic processing in

the model basal ganglia during robot behavior, and (iii) the

observed behavior of the robot model.

4.2.2.1. The robot engaged in a high proportion of closely

fought selection competitions resulting in predominantly

clean selections (84%). Hysteresis, which generates

behavioral persistence, was exhibited in 10.1% of

competitions.

Fig. 8 provides a partial view of the salience space

explored by the robot. Each cell shows the proportion of the

(approximately 10,000) basal ganglia competitions (1 per

robot time-step) for which the salience of the winning

channel (horizontal-axis) and that of the most salient loser

(vertical-axis) fell within a given range (note, there was

also, typically, non-zero salience in other losing channels

that is not shown in the figure) with darker colors indicating

greater proportions. The plot shows that there were a large

proportion of closely fought salience competitions, but that

the area of high salience competitions (where reduced

efficiency can be expected) was relatively sparsely sampled.

Our analysis again classified the outcome of the basal

ganglia selection competition, at each time-step, according

to the criteria specified in 3.4. Across all five trials, 84.4% of

salience competitions resulted in clean selection, 9.7% in

partial selection, and 5.9% in no selection. There was no

distorted selection or multiple channel selection. This result

indicates that the range of operation within which the basal

ganglia model generates (primarily) clean selection is
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Fig. 8. A partial view of the salience space sampled by the robot in a typical

trial. Axes denote the salience of the winning channel (horizontal), and of

the most salient loser (vertical). Shading indicates the proportion (darkerZ
greater) of the approximately 10,000 salience pairs falling within a given

(0.1!0.1) bin. Average channel salience was 0.235 (across all channels and

all time-steps), the average winning salience 0.475, and the average margin

(between winner and most salient loser) 0.154.
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sufficient to meet the action selection requirements of a

reasonably complex robotic task.

The presence of some shaded cells above the diagonal

(xZy) in Fig. 8 provides evidence of hysteresis in the

embedded basal ganglia model (i.e. competitions for which

the winning channel has lower salience than its closest

competitor). In the robot, hysteresis translates into

behavioral persistence, where the robot continues to display

a selected behavior beyond the point where a winner-takes-

all selector would switch to a higher salience task. Over all

five trials, persistence was shown on 10.1% of time-steps

and therefore had a significant influence on the observed

behavior of the robot.

4.2.2.2. Intrinsic processing in the embodied model. Fig. 9

illustrates some of the intrinsic processing occurring in the

embedded basal ganglia model during the first 180s

(approximately 1200 robot time-steps) of a typical trial.

Fig. 9a shows, for each channel (action sub-system), activity

in two of the basal ganglia input structures—the somato-

sensory cortex, yssc (solid line), whose output is proportional

to the net salience, and the D1 striatum, yd1 (dotted line).

The final plot in 9a shows the cortical output for the winning

channel (solid line) compared with that of the most salient

loser (dotted line). Fig. 9b shows the model activity, per

channel, for the basal ganglia output nuclei EP/SNr, ysnr.

The final plot in 9b showing average EP/SNr output across

the four losing channels (solid line) compared with that of

the winning channel (dotted line). In the following, we

briefly relate some key features of model intrinsic

processing to computational properties of the basal ganglia

model and embedding architecture, and to the observed
behavior of the robot. We also present some quantitative

measures relating the selection behavior of the embedded

model to intrinsic activity in EP/SNr and STN.

Striatal activity reflected changes in channel salience,

modulated by thalamocortical feedback. The graphs of

cortical and striatal D1 activity (9a) show that the saliences

varied both gradually and sharply with time reflecting

changes in either the continuous, and generally slow-

varying, motivations or the discrete and rapidly varying

perceptual variables. The difference between the cortical

and striatal activity (the filled and dotted lines) illustrates the

effect of thalamocortical feedback in boosting selected

channels, and of the striatal thresholds in suppressing low

salience inputs. A period of no selection occurred in this

trial during the interval tZ160–180 s where the cortical

output of the most active channel was at a low level (!0.3),

there was a near-equal level of output in a second channel

(see the final plot in 9a), and significant, non-zero output in

two further channels. This outcome demonstrates that the

threshold for selection is often higher in the five-channel

robot model than in the two-channel, disembodied model

illustrated in Fig. 7. This result is consistent with a previous

finding (Gurney et al., 2001b) that the presence of multiple

active channels makes the selection of any given channel

more difficult, a property of the model that we have termed

‘selection limiting’.

‘Busy signals’ performed a significant role in maintain-

ing behavioral selections. The utility of a sub-system busy

signal for maintaining a selected behavior is also visible in

the graphs of cortical and striatal output (9a). For instance,

during cylinder-pickup there is a noticeable change partway

through the execution of the behavior (tZ75–79s) corre-

sponding to the moment when the primary objective of

grasping the cylinder was achieved. The busy signal was

engaged at this point to maintain the salience of the behavior

above that of its competitors while the full movement

(returning the robot arm to vertical) was completed. Without

this signal the salience of the behavior would have fallen

more substantially once the cylinder was gripped, resulting

in failure to complete the full action pattern. In other words,

the busy signal allowed the maintenance of the behavior

while an essential ‘house-keeping’ element of the task was

completed. A busy signal played a similar role during the

execution of cylinder-deposit (tZ83-87s). The action of the

busy signal during wall-follow can be seen in the series of

intermittent salience spikes (tZ5–40s) that compensated for

temporary interruptions of the wall percept and, therefore,

prevented an early return to wall-seeking behavior. In this

role, the busy signal helped avoid unnecessary behavior

switching due to noisy or ambiguous sense data.

Basal ganglia output showed, predominantly, full

disinhibition of winners and increased inhibition of losers.

Average EP/SNr activity increased during behavioral

selections. The graphs of basal ganglia output (9b) show

the consequences of the further intrinsic basal ganglia

selection mechanisms (feed-forward off-centre on-surround,
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and the GP control circuit) that resulted in sharp decision

boundaries between action sub-systems with selected sub-

systems fully disinhibited (zero EP/SNr output). Note that

there is a marked difference in the mean activity of losing

channels (see bottom graph) during the period when there

was no selected behavior (tZ160–180s), as compared with

all times at which there was a winning behavior. To quantify

this effect, average EP/SNr activity was calculated across all

five runs for different selection outcomes. Taking the

EP/SNr output during periods of no selection as a baseline,

average output for all channels (losing channels) was 123%

(134%) of baseline during periods of partial selection, and

156% (182%) during clean selection. More generally, across

all selection competitions, there was a strong negative

correlation (rZK0.895) between the activity of the

winning channel and the average activity in losing channels.

Thus as a winning channel was disinhibited, the level of

inhibitory output to losing channels increased.
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Fig. 9. Intrinsic activity of the embedded basal ganglia model for the first 180s of
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STN activity increased during behavioral selections and

was the principle cause of increased inhibition of losing

channels. In the basal ganglia model, the only structure

providing excitatory input to EP/SNr is the STN which

consequently showed a high correlation (rZ0.884) with

activity in losing channels. STN is itself driven by cortical

inputs (somatosensory and motor) encoding channel

salience and thalamocortical feedback (EP/SNr-VL-MC),

and by a recurrent loop with GP. Analysis of STN firing in

the model indicates that this showed gradual increases with

cortical activity relating to increased salience (rZ0.696,

with SSC), and also showed a sharp increase when the

baseline periods of no selection were compared with either

partial selection (176% of baseline), or clean selection

(272%). From this data, we can conclude that while

selection of a winning channel generates, through thalamo-

cortical feedback, increased inhibition of EP/SNr of that

channel (via the direct striatonigral pathway), the same
)
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Fig. 10. Bout/sequence structure of action selection in the robot model for a

full 300 s trial. From the top down, the first five graphs show the efficiency

(e) of selection for a given action sub-system plotted against time, the sixth

the inefficiency (1Kew) of the current winner, the seventh the higher-order

structure of the bout sequences, (Av, avoidance; Fo, foraging), and the final

graph the levels of the two simulated motivations. All measures vary

between 0 and 1 on the y-axis. The robot began this trial with a high level of

simulated ‘fear’ that resulted in higher salience for wall-seek than for other

actions. After quickly finding a wall (tZ3s), wall-follow, became more

salient and was selected. These two bouts form a higher-order sequence of

avoidance behavior. Avoidance behavior was interrupted by an increase in

‘hunger’ and decrease in ‘fear’ driving up the relative salience of cylinder-

seek. Once the salience for wall-follow fell significantly below that of

cylinder-seek the robot switched to the latter (tZ52 s). When it found a

cylinder, cylinder-pickup was selected (tZ75 s), followed by wall-seek (tZ
79 s, this time carrying a cylinder), wall-follow (tZ81 s), and finally

cylinder-deposit (tZ84 s) when a ‘nest’ area was detected. These four bouts

constitute a sequence of appetitive or foraging (fo) activity. Having

completed a foraging sequence the level of simulated ‘hunger’ fell to zero

temporarily (tZ87 s), and the robot engaged in a new period of avoidance

(wall-follow, since the robot was already at the periphery of the arena).

Increasing ‘hunger’ then led to three further sequences of foraging (the final

one unfinished) interspersed by two periods of inactivity (as ‘fear’

approaches zero there was no motivation to perform avoidance

behaviors).
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positive feedback signal also leads, via STN, to increased

EP/SNr activity in losing channels.

4.2.2.3. The observed behavior of the robot showed clean

and decisive switching between selected channels, was

organized in extended bouts and goal-achieving sequences,

and displayed variability in sequence structure and

duration. Based on our earlier definition of a behavioral

bout, the activity of the robot (as illustrated in Fig. 9) can be

seen to consist of appropriate, and suitably extended bouts

of individual activities that are integrated over time into

appropriate, higher-order sequences of goal-achieving

behavior. This bout/sequence structure is more easily seen

in Fig. 10 where we show sub-system activity for the full

300s of the trial for which sample basal ganglia activity was

shown in Fig. 9. From the top down, the first five graphs in

this figure show the efficiency e of each of the five action

sub-systems over time, with bouts of full selection

appearing as solid blocks (in the style of a behavioral

ethogram). The next (sixth) graph shows a plot of (1Kew)

over time, and thus displays the extent to which the robot

was expressing its current action inefficiently or engaging in

periods of inactivity (note, that there was no distorted

selection in this trial, therefore a plot of distortion is

unnecessary). The next plot shows the structure of the robot

behavior in terms of higher-order behavioral sequences,

while the final plot shows the two simulated motivations.

Selection of each action sub-system was triggered by

relevant perceptual affordances, maintained for an appro-

priate period, and followed by rapid and decisive switching

to the next bout. Behavior switching occurred whenever the

salience of the ongoing activity fell significantly below that

of a competitor, or the salience of a competitor rose

significantly above that of the currently selected act. In

either case, the ongoing behavior terminated abruptly and

the new activity commenced with little delay (usually in the

next robot time-step). The initial bout sequence—finding a

wall (wall-seek) and then following it (wall-follow)—

reflected the high initial level of simulated ‘fear’ and can

be viewed as forming a higher-order sequence of avoidance

(Av) behavior, that kept the robot away from open space. As

‘fear’ reduced and ‘hunger’ increased this was followed by a

second episode of behavioral selections—finding and

collecting a cylinder (cylinder-seek, cylinder-pickup),

carrying it to a ‘nest’ (wall-seek, wall-follow) and dropping

it there (cylinder-deposit)—that can be viewed as a

sequence of appetitive or foraging (Fo) activity. The robot

subsequently engaged in further sequences of avoidance and

foraging interspersed with short periods of inactivity, where

the robot displayed no movement, corresponding to times at

which both artificial motivation levels were low.

The model behavior illustrated in Fig. 10 is typical of that

observed in all five trials, however, there are a number of

factors that contributed to significant variability both within

and across trials. These included small variations in the

initial position of the robot and of the cylinders; sensor
noise; perceptual aliasing (for instance ambiguous signals

that could derive from either walls or cylinders); wheel slip;

and friction against the arena floor and walls. Some of the

effects of this variability are illustrated in Table 1 which

depicts the transition frequencies for all behavioral pairs

(preceding behavior on the vertical axis, subsequent

behavior on the horizontal axis). The predominance of the

“standard” foraging sequence—Cs, Cp, Ws, Wf, Cd—is

clearly visible from high proportion of transitions lying on

the diagonal. The Cd–Wf and Wf–Cs transitions reflect the

occurrence of wall-following as an avoidance behavior

subsequent to, or preceding, foraging. The smaller number

of Cp–Cs transitions and Wf–Ws reflect the fact that the



Table 1

For each action sub-system the table shows the mean number of bouts per trial, the relative frequencies of alternative behaviors, and the relative frequencies of

different transitions (preceding behavior on the vertical axis, subsequent behavior on the horizontal axis)

Bouts per trial Relative

frequency %

Transition frequency %

Cs Cp Ws Wf Cd No

Cs 3.6 15.0 0.0 100.0 0.0 0.0 0.0 0.0

Cp 3.6 15.0 16.7 0.0 83.3 0.0 0.0 0.0

Ws 5.2 21.7 0.0 0.0 0.0 100.0 0.0 0.0

Wf 6.6 27.5 30.3 0.0 18.2 0.0 45.5 6.1

Cd 3.0 12.5 0.0 0.0 0.0 46.7 0.0 53.3

No 2.0 8.3 100.0 0.0 0.0 0.0 0.0 0.0

No indicates a bout of inactivity. The transition matrix is dominated by the standard foraging sequence Cs–Cp–Ws–Wf–Cd (shown in bold type).
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robot occasionally failed to grasp a cylinder correctly (and

therefore returned to cylinder-seeking), or lost touch with

the wall during wall-follow (and therefore returned to wall-

seeking). A second consequence of variability is that there

was a wide distribution of durations for foraging sequences

(range 23.7–126.4s, median 36.63s), due, in part, to the

simplistic search strategy employed by the robot and the

short-range of its sensors.
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4.3. Experiment 3—behavior of robot model when

faced with high salience competitions

4.3.1. Method. We previously noted (Section 4.1) that a

breakdown of clean selection can occur in the disembodied

model when two competitors have high salience levels. To

examine the behavioral consequences of this pattern of

selection, the robot model was tested over five trials of 120s

(approximately 800 robot time-steps) in which the salience

of every channel was increased, on every time-step, by a

constant amount (C0.4). All other aspects of the exper-

imental procedure were as described for experiment 2

(Section 4.2).
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Fig. 11. Salience space exploration following a uniform (C0.4) increase in

salience across all channels. Axes denote the salience of the winning

channel (horizontal), and of the most salient loser (vertical). Shading

indicates the proportion (darkerZgreater) of the approximately 4000

salience pairs falling within a given (0.1!0.1) bin. Average channel

salience was 0.576 (across all channels and all time-steps), the average

winning salience 0.935, and the average margin (between winner and most

salient loser) 0.173.
4.3.2. Results

During a continuous sequence of high salience compe-

titions the robot exhibited patterns of behavioral disinte-

gration characterized by: (i) reduced efficiency and

distortion of a selected behavior, and (ii) rapid switching

and incomplete foraging behavior.

Fig. 11 shows the effect of increased salience intensity on

exploration of the winner/most-salient-loser salience-space

over all trials. The graph demonstrates that virtually all

(w4000) salience competitions appeared in the region of

salience space (compare with Fig. 7) where reduced

efficiency and distorted selection can be expected.

Fig. 12 illustrates the behavior of the robot in a typical

trial. The initial avoidance sequence followed the expected

pattern but the transition to foraging activity did not begin

cleanly, instead showing reduced efficiency and intermit-

tent, partial selection of (losing) avoidance behaviors. To

the observer the movement of the robot behavior during the

transition appeared somewhat slowed and ‘tentative’.

During the foraging bout there was an extended period of
rapid switching between cylinder-seek and cylinder-pickup

with the robot repeatedly approaching the cylinder but

failing to grasp it. The pattern initially observed (tZ60–85s)

was for the robot to approach the cylinder; back up as if to

collect it in the gripper; then move forward without

lowering the gripper-arm, pushing the cylinder forward

slightly. Later (tZ85–90s, 110–115s), where both behaviors

showed some partial selection, the robot would lower

the arm whilst moving forward but fail to grasp the cylinder

due to being incorrectly aligned.

In all five trials, the selection behavior of the robot was

similarly inefficient and distorted with the robot frequently

displaying rapid alternation of foraging acts. This is

illustrated in the transition matrix in Table 2, which shows

that the behavior of the robot was dominated by the

sequence Cs–Cp–Cs–Cp. with no trials leading to a

successful foraging sequence.

4.3.2.1. Rapid switching between foraging acts constitutes a

‘behavioral trap’ arising through errors in behavior



Fig. 12. Bout/sequence structure of action selection in the robot model for a

trial of 120 s following a uniform increase (C0.4) in salience across all

channels. From the top down, the first five graphs show the efficiency (e) of

selection for a given action sub-system plotted against time, the sixth and

seventh the inefficiency (1Kew) and distortion (dw) of the current winner,

the eighth the higher-order structure of the bout sequences (Av, avoidance,

Fo, foraging), and the final graph the levels of the two simulated

motivations. All measures vary between 0 and 1 on the y-axis. The initial

avoidance sequence followed the expected pattern with wall-seek

succeeded by a period of wall-follow, however, the gradual increase in

cylinder-seek salience, from approximately tZ15 s onwards, caused

reduced efficiency of the wall-follow behavior resulting in visibly slowed

movement. The transition to foraging activity occurred at around tZ30 s,

cylinder-seek was selected but at reduced efficiency with intermittent

partial selection of avoidance behaviors (wall-seek, wall-follow). When the

robot found a cylinder (tZ60 s) the cylinder-pickup behavior was cleanly

selected but then interrupted prematurely—the robot backed-up ready to

lower the gripper-arm but then suddenly switched back to cylinder-seek.

There then followed a period of rapid switching between cylinder-pickup

and cylinder-seek with the robot repeatedly approaching the cylinder but

failing to grasp it. As the hunger motivation increased further, the robot

displayed a mixture of both behaviors (cylinder-seek and cylinder-pickup)

(around tZ90 and 110 s) but at reduced efficiency, still failing to grasp the

cylinder correctly.

T.J. Prescott et al. / Neural Networks xx (2005) 1–31 19

DTD 5 ARTICLE IN PRESS
maintenance.. The reduced efficiency and distorted selec-

tion that occurs with very high salience competitions is

generally consistent with the analysis presented in Fig. 7.

However, the disintegration observed in the foraging

sequence—oscillation between two foraging behaviors

while failing to grasp the cylinder—requires some further

explanation. Recall that the cylinder-pickup FAP makes use

of a busy signal at the point where the robot has backed-up

to make room for the gripper arm and is consequently no

longer able to detect the cylinder. In normal circumstances,

this signal would be sufficient to maintain behavioral
selection until the cylinder has been collected and the

gripper arm raised to vertical. In the high salience model,

however, the disappearance of the cylinder, which increases

the salience of cylinder-seek, initiates a brief period of

distorted selection (note the brief spikes in the graph of the

distortion measure in Fig. 12), during which cylinder-pickup

and cylinder-seek are simultaneously selected. High levels

of distortion have an interesting consequence in the

extended basal ganglia model, which is to reduce

thalamocortical feedback on the winning channel

(cylinder-pickup). This occurs because reduced SNr activity

in losing channels generates increased TRN activity for

those channels, which then inhibits the VL thalamus activity

of the winner (see Fig. 3 and Section 3.3.4). In the model,

the timing of the cylinder-pickup pattern, and thus of the

busy signal, relies on continued thalamocortical feedback.

When this feedback is lost, the sub-system clock is

disengaged and the busy signal cancelled. The salience of

cylinder-pickup then falls sharply, and the competing

behavior, cylinder-seek, wins the subsequent basal ganglia

selection competition. This pattern is then repeated when

the robot re-establishes contact with the cylinder. In sum,

the disintegrated pattern of rapid behavioral switching arises

through the premature interruption of a behavior that

depends upon an intrinsic salience boost (the busy signal)

for its completion. This can be characterized as an error of

behavior maintenance. The failure to execute the action

pattern successfully (and thus to trigger subsequent

elements of the behavioral sequence) places the robot in a

‘behavioral trap’ where it repeatedly executes an incomplete

and ineffective sequence of actions.
5. Discussion

5.1. Summary of main findings

The embedded basal ganglia succeeded in generating

sequences of integrated behavior in a robot model

provided with a repertoire of alternative behaviors and

varying levels of simulated motivations. The robot

switched cleanly and decisively between successive

behaviors, interrupting an ongoing behavior whenever

there was a competitor with significantly higher salience.

This outcome supports the hypothesis that the functional

properties of basal ganglia circuitry (to the extent that

they are captured by our computational model) make it

suited to the task of resolving selection conflicts. The

robot model, therefore, supports the claim of effective

action selection by the basal ganglia, over and above

earlier demonstrations of the good signal selection

properties of these circuits. Whilst the model has an

operating range that supports clean selection for most

levels of salience competition, and is sufficient to provide

appropriate selection in our robot task, reduced selection

efficiency and partial selection of losing competitors can



Table 2

For each action sub-system the table shows the mean number of bouts per trial, the relative frequencies of alternative behaviors, and the relative frequencies of

different transitions (preceding behavior on the vertical axis, subsequent behavior on the horizontal axis)

Bouts per trial Relative

frequency %

Transition frequency %

Cs Cp Ws Wf Cd No

Cs 14.6 44.5 0.0 98.6 0.0 1.4 0.0 0.0

Cp 14.4 43.9 100.0 0.0 0.0 0.0 0.0 0.0

Ws 1.8 5.5 0.0 0.0 0.0 100.0 0.0 0.0

Wf 2.0 6.1 60.0 0.0 40.0 0.0 0.0 0.0

Cd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

No 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

No indicates a bout of inactivity. The transition matrix is dominated by switching between cylinder-pickup (Cs) and cylinder-seek (Cs) (bout and transition

frequencies highlighted in bold type).
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occur when the model is presented with multiple high-

salience competitors. Hence, when a version of the model

was tested with substantially increased salience across all

channels, distorted motor output and behavioral disinte-

gration were observed.

In the remainder of this discussion we consider: (i) some

elements of the embedding architecture and their possible

neural correlates, (ii) comparisons of the results from the

robot model with neuroethological observations of animal

behavior, and (iii) the relationship of the current study to

other computational models of the basal ganglia.
5.2. Possible neural correlates of the robot embedding

architecture

As previously noted (Section 3.1), our approach to

developing a robotic test of the hypothesis that the basal

ganglia performs action selection is based on the assumption

that informative models can be constructed by combining

biomimetic components (here the extended basal ganglia

model) with sufficient engineered components to create a

full working model. This strategy requires, however, that we

devise a suitable interface between the biomimetic and

engineered components such that appropriate input signals

are supplied to the embedded neural model, and a

biologically plausible role is assigned to its outputs. We

have also argued that it is necessary to assess the engineered

components of the model so-constructed with respect to

their possible consequences for the theoretical issues under

investigation. The following briefly considers key elements

of the architecture/model interface with regard to these

requirements.
5.2.1. Basal ganglia input encodes signals relevant

to the selection and maintenance of ongoing behavior

The hypothesis that the basal ganglia is involved in

selecting actions implies that the inputs to the basal

ganglia encode the relative salience of competing actions

(Redgrave et al., 1999a; Zink, Pagnoni, Martin, Dhamala,

& Berns, 2003). Amongst the evidence lending weight to

this view are studies showing activity in striatal spiny
neurons just prior to movements (see Mink, 1996 for

review). Our proposal that the basal ganglia is an action

selection device makes the further claim, however, that

basal ganglia activity is important not just for selecting

winning actions but also for the appropriate maintenance

and termination of selected actions (Redgrave et al.,

1999a). That the basal ganglia is involved in the

maintenance of selection is suggested by data showing

that a substantial proportion of striatal projection neurons

fire after movement has been initiated, and that the

timing of this movement-related activity in the striatum is

distributed over a wide-range of delays relative to the

onset of movement (Aldridge, Anderson, & Murphy,

1980; DeLong, Alexander, Georgopoulos, Crutcher,

Mitchell and Richardson, 1984; Jaeger, Gilman, &

Aldridge, 1995; Mink, 1996). The inhibition of activity

in basal ganglia output neurons (EP/SNr or GPi/SNr in

primates) has similarly been recorded as occurring during

the execution of limb movements (Mink & Thach, 1991;

Schultz, 1986), saccades (Basso & Wurtz, 2002; Handel

& Glimcher, 1999; Hikosaka & Wurtz, 1989), and

behavioral bouts (Joseph, Boussaoud, & Biguer, 1985).

The robot model we have described here, highlights a key

issue in the appropriate maintenance of behavioral

selections which is that the perceptual and motivational

conditions that lead to the selection of a given behavior

often do not persist for the full duration of the

performance of that behavior. This means that a

mechanism, such as winner-takes-all, that ignores the

recent history of selection and allocates control of the

motor system to the action sub-system with the highest

instantaneous salience will be prone to errors of behavior

maintenance such as the premature interruption of an

ongoing behavior, or ‘dithering’ (rapid switching)

between two actions with similar salience. Two logically

possible solutions for this problem are: (i) that a winning

competitor instigates some form of ‘mutual exclusion

lock’ that prevents rivals from accessing motor resources

until the intended motor act has been completed (and

then releases the lock), or (ii) that the ongoing selection

contest is biased in favor of the currently winning
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competitor allowing it to maintain an ‘edge’ over its

selection rivals, for an appropriately extended period, at

lower (extrinsic) salience levels than were required to

initiate it. Whilst a type (i) solution is often employed in

real-time computer operating systems (Ganssle & Barr,

2003), our model proposes that the basal ganglia

implements a type (ii) solution to the maintenance

problem by providing additional salience support to the

current winner for the duration of the behavior. More

specifically, we have proposed two such salience-

incrementing mechanisms. First, we have suggested that

basal ganglia-thalamocortical loops instantiate a positive

feedback circuit that can provide a significant salience

boost to a winning sub-system (Redgrave et al., 1999a).

In the extended basal ganglia model this feedback

induces significant hysteresis (see Fig. 7), and thus

generates behavioral persistence in the robot. Second,

we have found that accurate control over the maintenance

and termination of selection for action patterns may be

best achieved when an action sub-system is able to

generate a precisely timed, intrinsically generated

contribution to its own salience, that we have termed a

busy signal. We, therefore, hypothesize that basal ganglia

activity during ongoing behavior may reflect in part, the

operation of similar selection maintenance mechanisms.

The suggestion that basal ganglia thalamocortical loops

act to generate increased salience in currently selected

channels is consistent with a significant corpus of research

in ethology indicating a role for positive feedback

mechanisms in the maintenance of behavioral selections

(Houston & Sumida, 1985; McFarland, 1989; Roeder,

1975). The further notion, that signals generated by

ongoing motor activity can be important for maintaining

behavioral selections, might explain why the input to the

basal ganglia, from both cortical (Cowan & Wilson, 1994;

Levesque, Charara, Gagnon, Parent, & Deschenes, 1996)

and subcortical (Chevalier & Deniau, 1984; Krout, Loewy,

Westby, & Redgrave, 2001) sources, often comprises

collateral branches from fibers projecting to motor regions

of the brainstem and spinal cord. At the current time there

is no agreed interpretation of these data, the busy signal

employed in our robot model, therefore, suggests a novel

hypothesis concerning a possible functional role for these

motor-related inputs.

Note that while our model invokes a single leaky

integrator in each nucleus for each channel, this is

intended to represent a population of neurons in each

target structure. Thus, in considering the striatum, for

example, our model is consistent with the possibility that

different sub-populations of striatal neurons encode

different aspects of the salience of the current selection

at different times during the execution of a motor act. In

other words, some sub-populations of striatal neurons

may be specifically concerned with the initiation of

behavior (and thus fire before behavior onset), and others
with the maintenance of the current selection (and thus

fire during the expression of the behavior).

It is interesting to contrast the type (ii) maintenance

mechanisms implemented in our model (and hypothesized

for the basal ganglia), that will allow an interrupt by a much

stronger competitor, with the type (i) ‘mutual exclusion

lock’, or mutex, preferred in real-time operating systems.

Interestingly, the use of a mutex can lead to a resource

allocation problem termed ‘priority inversion’, that

occurred most famously in the significant computer

difficulties experienced by the 1997 Mars pathfinder mission

(Reeves, 1998). Whilst there are workarounds that can avoid

the inversion problem these are computationally non-trivial

involving, for instance, the inheritance of priority levels

from one task to another (Sha, Rajkumar, & Lehoczky,

1990). It is, therefore, conceivable that ‘softer’ forms of

resource locking, such as the maintenance mechanisms

described here, could have applications in artificial

scheduling systems.

5.2.2. Thalamocortical feedback may play a role

in timing sequential action patterns

A role for the basal ganglia in behavioral timing is

consistent with our general hypothesis that the basal

ganglia regulate the maintenance and appropriate termin-

ation of action as part of the solution to the overall action

selection problem. Our robot model invokes the use of

the output of VL thalamus as a signal regulating the

internal clock used by each action sub-system that

generates an intrinsically patterned behavioral sequence

(i.e. a fixed action pattern). Although the manner in

which basal ganglia output is used to control

these intrinsic patterning systems is not intended to be

closely biomimetic, the following evidence supports

the suggestion that thalamocortical feedback is important

for behavioral timing. First, cortico-basal ganglia-thala-

mocortical loops have been specifically hypothesized as a

likely neural substrate for interval timing (Meck, 1983;

Meck & Benson, 2002), and have been the basis for a

neurobiologically plausible computational model (Matell

& Meck, 2000). Second, dopaminergic drugs have been

found to affect the speed of the ‘internal clock’ (Buhusi

& Meck, 2002), further implicating the basal ganglia as

part of the functional brain system for time estimation.

Finally, the timing of repetitive, intrinsically generated

sequences (such as paced finger-tapping) is known to be

impaired in Parkinson’s patients with reduced thalamic

activity a possible causal factor (Elsinger, Rao, Zimbel-

man, Reynolds, Blindauer and Hoffmann, 2003; Marsden

& Obeso, 1994). Meck and co-workers (Gibbon, Church,

& Meck, 1984; Meck & Benson, 2002) have elaborated a

number of models of the role of the basal ganglia in

interval timing, the simplest of which, we propose, bears

interesting similarities to the mechanism we have used in

our model. Specifically, Gibbon et al. (1984) have

suggested: (i) that the basal ganglia can act as a form
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of ‘switch’ that can be opened or closed depending on

the detection of temporally significant information, (ii)

that when closed this switch allows the flow of

pacemaker pulses to target systems; and (iii) that when

the temporally significant information ended, the switch

opens stopping the flow of pulses. Similarily, in our

model, the internal clock of a target FAP sub-system is

enabled (i.e. begins to measure elapsed time from zero)

by basal ganglia disinhibition (closing the switch) and is

disabled (reset to zero) when the output for that basal

ganglia channel returns above threshold (opening the

switch). Whilst the robot model would benefit from the

inclusion of a more biologically realistic simulation of

interval timing it is likely that this will require modeling

of populations of oscillating neurons (Matell & Meck,

2000) rather than the simpler rate-coding units used

currently.

As noted above, our robot embedding architecture

allows winning sub-systems to reinforce their own

salience during critical passages of behavior. Where this

additional salience input is triggered by the internal

clock, it is logical to suppose that the loss of

thalamocortical feedback, and consequent disruption of

sub-system timing, should also interrupt the busy signal

as implemented in the model.
5.2.3. Basal ganglia output to the brainstem may operate

as a motor gating signal

Computational studies have suggested that the position

of axon terminals on the dendritic tree of a target neuron

help determine the extent to which inhibitory inputs have

non-linear effects. More specifically, terminals on or close

to the cell body have been proposed to have a non-linear,

multiplicative ‘shunting’ effect that scales incoming

excitatory signals (Blomfield, 1974; Koch, Poggio, &

Torre, 1983). Our robot model instantiates such a form of

shunting inhibition for the influence of basal output nuclei

on motor pattern generators via the gating signal e (Eq. (5)).

GABAergic terminals have been viewed as implementing

shunting inhibition elsewhere in the nervous system (Ulrich,

2003), and this interpretation of the role of GABAergic

basal ganglia outputs to the brainstem motor systems

appears to be consistent with the available, if limited,

electron microscopy evidence. For instance, Tsumori &

Yasui (1997) found SNr axon terminals on the soma and

proximal dendrites of neurons in the rat superior colliculus,

while Shink, Sidibe, & Smith (1997) found that GPi output

to the pedunculopontine nucleus in the squirrel monkey

formed symmetrical contacts predominantly with proximal

dendrites. Since, the action selection hypothesis asserts that

the basal ganglia act to gate access to the final motor path we

might expect to find further evidence of shunting inhibition

in future studies of EP/SNr output to motor and pre-motor

systems.
5.3. Comparisons with ethological and neuroethological

investigations of animal behavior

5.3.1. Action selection and behavioral sequencing

In our robotic task, the embedded model of the basal

ganglia demonstrates the capacity to generate extended

sequences of appropriate and goal-directed behavior,

organized at two temporal scales— bouts (cylinder-seek,

cylinder-pickup, etc.) and behavioral sequences (avoidance,

foraging). This outcome accords with a variety of studies in

which the vertebrate basal ganglia have been shown to play

a role in generating sequential behavior. For instance,

Kermadi and co-workers (Kermadi & Boussaoud, 1995;

Kermadi & Joseph, 1995) have found caudate nucleus

activity in monkeys, linked to memorized sequences of

saccades and arm movements. Berridge and co-workers

(Aldridge & Berridge, 1998; Cromwell & Berridge, 1996;

Meyer-Luehmann, Thompson, Berridge, & Aldridge, 2002)

have shown that the striatum is necessary for the expression

of species-typical sequences of grooming behavior in

rodents, and have recorded related activity in dorsolateral

and ventromedial striatum and in substantia nigra. Electro-

physiological studies in behaving animals have also

identified activity encoding successive phases of maze-

traversing behavior in the rat ventral striatum (Mulder,

Tabuchi, & Wiener, 2004; Shibata, Mulder, Trullier, &

Wiener, 2001) and dorsal striatum (Schmitzer-Torbert &

Redish, 2004). Finally, behavioral sequences in non-

mammalian vertebrates, such as the toad prey-catching

sequence studied by Ewert and co-workers (Ewert, 1987;

Ewert, Buxbaum-Conradi, Dreisvogt, Glagow, Merkel-

Harff & Rottgen, 2001), may also be subserved by basal

ganglia loops that are largely homologous to those found in

mammals (Marin, Gonzalez, & Smeets, 1997; Redgrave

et al., 1999a).

Our experiments with the robot model raise some

interesting questions with regard to this neurobehavioral

data on basal ganglia sequencing, which are best illustrated

with reference to the research on rodent grooming by

Berridge and co-workers (Aldridge & Berridge, 1998;

Cromwell & Berridge, 1996). Grooming patterns in rodents

often appear in a stereotypic sequence that Aldridge and

Berridge (1998) have described as a “four-phase syntactic

chain”. Whilst the grooming pattern itself is thought to be

generated outside the basal ganglia (see below) its

behavioral expression has been shown to be critically

dependent on the integrity of a small area of the anterior

dorsolateral striatum. In electrophysiological single-cell

recordings from behaving animals (Aldridge and Berridge,

1998), activity in dorsolateral striatal neurons showed

marked increases during one or two phases of the grooming

sequence. In addition, the majority of these neurons did not

respond when similar grooming movements were made

outside a sequence (suggesting that their activity is

sequence-related not movement-related). Finally, some

neurons in ventromedial striatum, where lesions do not
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impair the production of syntactic grooming chains, also

showed increased activity during grooming sequences,

however, these increases were smaller than those seen in

the dorsolateral striatum. The intrinsic activity of the robot

basal ganglia model, as shown in the traces of model ‘D1’

units in Fig. 9a, suggests that activity in striatal neurons can

occur in multiple channels simultaneously, with correlated

changes occurring in those channels whose salience is based

on over-lapping feature sets. However, it is generally only

the most active channel whose motor output is gated for

behavioral expression (see simulated EP/SNr output in

Fig. 9b). Applied to the data from the grooming study, this

suggests that the (weaker) activity of ventromedial striatal

neurons may code for losing behaviors that are partially

primed by contextual salience cues present during the

sequence of syntactic grooming. A related hypothesis can

also be formulated with respect to the activity in those

dorsolateral neurons that fire during multiple phases of

grooming syntax. Specifically, it seems plausible that a

neuron tuned to fire maximally in a single phase of

grooming, might also show activity during an earlier or

later phase due to a partial overlap in afferent input (related

to shared contextual cues) with the neurons coding for the

other phase. Again, this activity will not feed-through to

behavioral expression, since activity in weaker channels

loses out during the resolution of the competition elsewhere

in the basal ganglia. Several examples of this can be seen in

Fig. 9a, for instance, the wall-seek channel shows strong

activity (tZ77–79s) during the preceding cylinder-pickup

(as well as some activity during wall-follow) whilst the

cylinder-deposit channel shows a significant activity during

the preceding bout of wall-follow (tZ80–83s)—in all cases

the corresponding small reductions in EP/SNr output are

insufficient to allow these channels to distort the behavioral

expression of the winner. Note, the hypothesis that multi-

phase activity in dorsolateral striatal neurons is due to

overlapping feature sets differs from the suggestion put

forward by Aldridge and Berridge (1998) that neurons that

fire during multiple phases code “serial order as a higher-

order property distributed over the duration of the chain”

(p. 2784).

Whilst the activity of our robot model shows interesting

parallels with experimental studies in mammals, at a purely

behavioral level, the most obvious similarity is perhaps with

the behavior of an amphibian—the prey-capture sequence

of the toad bufo bufo, which has been carefully described

and analyzed by Ewert (1987). Toad prey-catching is

composed of a sequence of action patterns—orienting to the

prey (o), approaching (a), fixating (f), and snapping (s)—

that may be implemented in the toad brain by disinhibitory

loops involving the ventral striatum (Ewert et al., 2001).

Summarizing an extensive series of experiments on prey-

catching behavior Ewert concludes that “it is not the

previous action, but the ongoing stimulus situation h.i that

determines the subsequent response” (Ewert, 1987, p. 340).

Much the same can be said of our robot model, where it is
primarily the perceptual/motivational context that deter-

mines which behavior is selected at any given moment.

Further, although ‘standard’ toad prey-catching behavior is

described by the action sequence o, a, f, s; observed

behavior often departs from this template in a manner that

demonstrates both flexibility and opportunism. Thus, “if the

distance between prey and toad is short, prey-catching

consists of o, f, s; if prey suddenly appears close to the

animal, only, o, s, or f, s, or just s is elicited; if the prey flees

the toad’s appetitive pursuit response occurs—depending on

the prey’s behavior—in variable succession such as o, o, o,

a, o, a, f, a, f, o, f, s” (Ewert, 1987, p. 340). The behavioral

sequences generated by the robot are similarly context

dependent. So, for instance, the ‘standard foraging

sequence’—Cs, Cp, Ws, Wf, Cd—may be emerge as Cs,

Cp, Cs, Cp, Ws, Wf, Cd, if the robot fails to grasp the

cylinder correctly on first attempt, or as Cs, Cp, Ws, Cd, if

wall-seeking behavior fortuitously places the robot in the

‘nest’ area.

Whilst the two-level structure of robot behavior is

suggestive of hierarchical organization, it is clear from the

design of our embedding architecture that the observed

behavioral sequences are not the consequence of any

explicit hierarchical decomposition of control. Rather,

robot activity is organized by a stream of moment-to-

moment action selection ‘decisions’ structured by the

robot’s perceptual and motor interactions with its

environment, by its internal (motivational) state, and by

the selection/switching properties of the embedded basal

ganglia model. We conclude, following Ewert (1987), that

hierarchical organization of control is not essential for the

appearance of sequential activity. This is not to say that

we would rule out the possibility of hierarchical

organization in vertebrate action selection. Indeed we

have argued (Prescott et al., 1999; Redgrave et al., 1999a)

that the part closed-loop, part open-loop inter-relationships

between the different basal ganglia domains (limbic,

associative, and motor) (Joel & Weiner, 1994) strongly

suggest some form of hierarchical decomposition of

control, the benefits of which have been identified by

research in artificial agents (Bryson, 2000; Prescott et al.,

1999). Instead, the robot model makes clear that any

account of animal behavior that purports to show

hierarchical decomposition must demonstrate that emer-

gent sequencing, of the kind described here, is not a

viable alternative explanation.

A related issue concerns the granularity of the action

selection provided by the basal ganglia. For instance, some

researchers have proposed a role for the basal ganglia in a

more fine-grained sequencing of movement than selecting

between competing behavioral alternatives (see Mink, 1996

for review). Indeed, this level of action selection would be

equivalent to the type of movement sequencing currently

performed within our fixed action pattern sub-systems (e.g.

cylinder-pickup). The suggestion that the basal ganglia is

involved in the details of movement sequencing can,
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however, be reconciled with the view of the basal ganglia as

an action selection device on the grounds that such tasks can

be regarded as action selection problems on a much shorter

time-scale. Again, this is consistent with the evidence of

multiple basal ganglia domains and the general hypothesis

(Redgrave et al., 1999) that similar switching circuitry is

employed in different regions of the basal ganglia to resolve

selection problems at different levels of functional inte-

gration. It seems likely, however, that in the case of innate

or well-practiced movement patterns, fine-grained control

of movement, generally, takes place outside the basal

ganglia. The research on the syntax of rat grooming

behavior, reviewed above, serves to demonstrate this

point—Cromwell and Berridge (1996) propose both that

the role of sequencing the component movements of basic

grooming acts is satisfied by pattern-generators in the

brainstem, and that the role of the basal ganglia, “is not so

much for the generation of the serial order pattern h.i as for

the implementation of that pattern in the normal flow of

behavior.” (p. 3455). Research on learning in the striatum

suggests a further interesting possibility in relation to

acquired behaviour. Carelli, Wolske, & West (1997) have

shown that striatal neurons that fire while a rat is learning a

lever-pressing task cease firing once that behavior is well-

practised. The conclusion these researchers derived from

this finding is that the striatal activity needed to learn a

particular motor response may not be required for its

performance once the action has become automated. This

result is open to a number interpretations, however, one

possibility is that action selection by the basal ganglia may

be involved in constructing new movement sequences

which, following practice, then become available for

selection as larger ‘chunks’ of behavior (Graybiel, 1998).

5.3.2. Activity in Substantia Nigra pars reticulata

neurons during behavior

A number of recent studies with behaving rats (Gulley,

Kosobud, & Rebec, 2002; Gulley, Kuwajima, Mayhill, &

Rebec, 1999; Meyer-Luehmann et al., 2002) have noted

correlations between SNr activity and episodes of motor

behavior. Given the prevailing view that the basal ganglia

selectively gate the motor system through the removal of

EP/SNr inhibition, a particularly interesting finding is that

rat SNr cells showing an increase in behavior-related firing

generally out-number those showing a decrease in firing

rate. For instance, Gulley et al. (1999) compared electro-

physiological recordings of SNr cells during movement with

those of the same neurons during periods of quiet rest. Of

the cells showing an overall correlation with movement,

79% showed increased firing compared to 21% decreased

firing. In cells with increased firing, rates were up to 38%

higher than during the base-line rest period. In a further

study (Gulley et al., 2002), comparing SNr activity during a

conditioned reinforcement task with a base-line period prior

to exposure to the reward-related apparatus, 110 of 225 SNr

cells (48%) showed an increased in activation of 200% or
more, while only 17 cells (8%) showed a decrease of 25% or

greater.

The above findings concur with the levels of activity

found in our model of EP/SNr during different patterns of

robot activity. Specifically, we found fluctuations in EP/SNr

output correlating with changes in channel salience, and a

substantial increase (34–82%) in the average output of

losing channels during episodes of partial or full selection as

compared to periods of no selection (inactivity). It seems

reasonable to expect that in action selection competitions

mediated by the rat basal ganglia losers will outnumber

winners (just as in the robot where there is generally 1

winner and 4 losers). Our model is, therefore, consistent

with the data of Gulley et al. (2002, 1999) showing that only

a minority of cells reduce their activity during behavior

(here interpreted as the ‘winning channels’), whilst a

majority show increased activity (the ‘losing channels’).

Our analysis of the mechanisms underlying these changes

suggests that SNr neurons showing increased firing are

responding to correlated increases in STN, which in turn are

due to greater activity in cortical-STN afferents, and in

particular, in pathways encoding thalamocortical feedback

from winning channels. Such increases can be expected to

be most evident during periods of activity relative to

inactivity (as in Gulley et al., 1999), or where there is a

sudden increase in the affordances for reward-related

behavior (as in Gulley et al., 2002).

5.3.3. Behavioral disintegration in competitions

between multiple high-salience competitors

When presented with a continuous sequence of high

salience selection competitions the robot exhibited two

identifiable patterns of behavioral disintegration. First, it

displayed reduced efficiency of the winning sub-system

combined with partial activity of losing sub-systems. This

resulted in a slowed and distorted execution of the most

active behavior. Second, a ‘behavioral trap’ developed

consisting of repeated switching between two behaviors.

The latter pattern arose through the full selection, but

premature interruption, of a fixed action pattern (cylinder-

pickup), and depended on two features of the embedded

model: (i) that intrinsically generated salience signals are

used to maintain ongoing selections, and (ii) that the

timing and maintenance of such signals relies upon

feedback signals from the selection mechanism (that are

disrupted under circumstances of strong, evenly matched

salience). Possible neural correlates for these mechanisms

were considered above (Section. 5.2).

Whilst the performance of the model in these circum-

stances is clearly sub-optimal from a purely action selection

viewpoint, it shows interesting similarities to the findings

of a large number of studies investigating the behavior

of animals in conflict situations (Fentress, 1973; Hinde,

1953, 1966; Roeder, 1975). For instance, Hinde (1966)

describes a number of possible outcomes that have been

observed in ethological studies of strong behavioral
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conflicts: (i) inhibition of all but one response, (ii)

incomplete expression of a behavior (generally the

preparatory stages of behavior are performed), (iii)

alternation between behaviors (or ‘dithering’), (iv) ambiva-

lent behavior (a mixture of motor responses), (v) compro-

mise behavior (similar to ambivalence, except that the

pattern of motor activity is compatible with both behavioral

tendencies), (vi) autonomic responses (for instance defeca-

tion or urination), (vii) displacement activity (expression of

a behavior that seems irrelevant to the current motivational

context, e.g. grooming in a ‘fight or flight’ conflict situation)

. Of these outcomes, several show clear similarities with the

behavior of the robot in the high salience condition.

Specifically, the distortion observed in the early stages of

the trial could be understood as a form of ambivalent

behavior (iv), whilst the later repetitive behavioral switch-

ing has elements of both incomplete expression of behavior

(ii) and alternation (iii).

More generally, the behavior of the embodied basal

ganglia model is consistent a wide range of findings in

psychology and ethology demonstrating that behavioral

processes are most effective at intermediate levels of

activation (Berlyne, 1960; Bindra, 1969; Fentress, 1973;

Malmo, 1959), These findings can also be viewed as

expressing the Yerkes-Dodson law (Yerkes & Dodson,

1908) that predicts an ‘inverted U’-shaped relationship

between arousal and performance. Our model is consistent

with this law in that the robot shows little or no behavioral

expression when only low salience inputs are present,

demonstrates effective action selection for a range of

intermediate level salience inputs (and for high salience

inputs where there is no high salience competitor), and

exhibits disintegrated behavior in circumstance of conflict

between multiple high-salience systems. The robot model,

therefore, suggests that the basal ganglia form an important

element of the neural substrate mediating the effects of

arousal on behavioral effectiveness.

5.4. Comparison with other modeling investigations

of the basal ganglia

The literature on computational modeling of the basal

ganglia has been extensively reviewed elsewhere (Gillies &

Arbuthnott, 2000; Gurney et al., 2004; Houk Davis, &

Beiser, 1995; Prescott et al., 2002). Whilst action selection

is a strongly emerging theme in this literature, the Gurney

et al. (2001a,b) model that we have embedded in our robot

architecture is distinctive in its interpretation of basal

ganglia intrinsic circuitry as containing synergistic ‘selec-

tion’ and ‘control’ pathways. The current study demon-

strates the effectiveness of these mechanisms, when

combined with basal ganglia thalamocortical loops, in

providing effective robot action selection across a wide

range of competing salience inputs. A large number of

models have also examined the role of the basal ganglia as

part of a wider circuit involved in motor control or
behavioral sequencing (e.g. Bar-Gad, Morris, & Bergman,

2003; Beiser & Houk, 1998; Brown, Bullock, & Grossberg,

2004; Contrerasvidal & Stelmach, 1995; Dominey & Arbib,

1992; Dominey & Boussaoud, 1997; Frank, Loughry, &

O’Reilly, 2001; Fukai, 1999; Houk & Wise, 1995; Taylor &

Taylor, 2000) but have stopped short of investigating fully

embodied (robotic) implementations. In the current article

we have adopted a different strategy emphasizing embodi-

ment as both a test-bed for validating hypotheses about

basal ganglia function, and also as an ‘intuition-pump’ for

generating new insights into neurobiological data. For

instance, the requirement to provide integrated sequences of

robot behavior that fulfill real goals, focused our attention

on the problem of maintaining ongoing behavioral

selections in the face of varying motivational and sensory

input. Resolving these issues for the robot model then

prompted us to reconsider evidence for striatal and

thalamocortical activity during ongoing behavior as a

possible neural substrate for this function of selection

maintenance. Whilst some authors have assigned a role to

basal ganglia thalamocortical loops in sustaining working

memory patterns (e.g. Beiser & Houk, 1998; Frank et al.,

2001), we suggest the more general hypothesis that these

circuits operate to maintain ongoing selections in either the

behavioral or working memory domains. Further, whereas

Frank et al. (2001) have proposed a dissociation between

intermittent firing in the basal ganglia that performs a gating

role, and more continuous firing in frontal cortex that

performs a maintenance role; we have drawn attention to the

ongoing activity in basal ganglia during movement that

cannot be linked to the initiation of new selections. We

suggest that a parsimonious explanation of this activity,

consistent with the wider hypothesis of selection by the

basal ganglia, is that it serves to maintain selections and

varies both with the urgency assigned to the completion of

the current task (maintenance signals) and with the changing

salience values of competitors (due to the dynamics of

between-channel interactions in the basal ganglia).

The basal ganglia are strongly implicated in goal-

directed or incentive learning (Dayan & Balleine, 2002;

Hollerman, Tremblay, & Schultz, 2000; Kimura, 1995), a

key finding in this context being that dopaminergic neurons

in midbrain basal ganglia nuclei appear to fire in

conjunction with rewarding events, or prior to anticipated

rewarding events (Schultz, Apicella, & Ljungberg, 1993;

Schultz et al., 1997). Montague and colleagues (Montague,

Dayan, & Sejnowski, 1996; Schultz et al., 1997) have

proposed that the afferents from these structures to striatal

neurons may provide a training signal similar to the

temporal difference error used in artificial reinforcement

learning methods, while Houk, Adams, and Barto (1995)

were the first of several authors to suggest that something

akin to an actor-critic learning system (Sutton & Barto,

1998) may be operating in the basal ganglia. There have

been various computational formulations of these proposals

(see Doya, Dayan, & Hasselmo, 2002; Montague, Hyman,
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& Cohen, 2004; Schultz, 1997; Worgotter & Porr, 2005 for

reviews), including a robotic demonstration of a ‘dopa-

mine’-based actor-critic model described by (Sporns &

Alexander, 2002). Despite this effort, there is no universally

accepted theory, at a systems level, of how such learning

might be implemented in the circuits of the basal ganglia

(Joel, Niv, & Ruppin, 2002; Worgotter & Porr, 2005), and

this remains a very active area of research. Our article has

addressed the question of whether an embodied model of the

basal ganglia can perform appropriate action selection

irrespective of how the salience-related parameters for

specific actions are determined; although hand-tuned

parameters where used, the model could, in principle, be

extended so as to learn from experience using model

learning systems such as those reviewed above.

There is a general trend in basal ganglia modeling

towards the use of more biologically realistic but

computationally intensive models of neural circuits based

on ‘leaky-integrate and fire’ (LIF) or compartmental models

of single neurons (Gurney et al., 2004). The availability of

parallel computing clusters is beginning to make feasible

the simulation of large-scale circuits that include these more

detailed single neuron models, at speeds that will permit

real-time control of robot behavior. Future versions of our

robot model will, therefore, seek to incorporate greater

biological detail, for instance, by using a spike-coding

(rather than rate-coding) neurons as our basic model

element (Humphries, 2002), by incorporating additional

pathways (Gurney et al., 2004), and by exploiting insights

from biophysical modeling of single neurons (e.g. Wood

et al., 2004). One particularly promising route may be to use

so-called ’reduced’ models (e.g. (Izhikevich, 2003; Rinzel

& Ermentrout, 1998) that can exhibit many of the patterns of

excitability shown in real neurons without the full apparatus

of the Hodgkin–Huxley dynamics instantiated across

several ionic currents (as required in biophysical models).

An additional goal will be to incorporate realistic models of

target sensor input and motor output systems—for instance,

through embodied modeling of the role of the basal ganglia

in sensorimotor tasks such as gaze control—in order to more

directly address a wide range of neurobehavioral data.
6. Conclusion

We have described the robotic embedding of a high-level

model of the basal ganglia and related nuclei based on the

premise that these neural circuits play a critical role in

action selection. This model was challenged with the task of

selecting between five alternative behavioral sub-systems in

the context of varying motivational and sensory inputs, and

required to generate coherent sequences of robot behavior.

Results demonstrate that the model basal ganglia switches

effectively between competing sub-systems depending on

the dynamics of their relative salience. The architecture,

therefore, provides an existence proof that the basal ganglia
can function as an effective action selection mechanism

when embedded in a physical device. Further, by generating

a model whose behavior is directly observable (rather than

merely interpretable as a disembodied model would be) we

were able to draw some interesting comparisons with the

outcomes of behavioral experiments with animals, most

notably with respect to: (i) the role of the basal ganglia in

behavioral sequencing, (ii) the activity of neurons in basal

ganglia input (striatum and STN) and output (SNr) nuclei

during ongoing behavior, and (iii) the behavior of animals

in situations of behavioral conflict.
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Appendix A. Sensory systems

The first six peripheral sensors (1–6) are arranged in a

semi-circle at the front of the robot, sensor 1 is furthest left,

sensor 6 furthest right, with sensors 3 and 4 covering a narrow

field of view directly ahead of the robot. Sensors 7 and 8 are

directed towards the rear of the robot and are not used in the

current model. The ith peripheral sensor generates both an

infra-red proximity reading, ir(i), which is integer valued in

the range 0–1023 with higher values indicating greater

proximity to a nearby surface, and an ambient-light reading,

amb(i), in the range 0–450 with lower values indicate greater

luminance. The optical gripper sensor, opt( ), provides a

binary signal, 1 if there is an object in the gripper, 0

otherwise. The arm position sensor, arm( ), returns a value in

the range 255 (lowered in front) to 152 (raised overhead). The

following variables are computed from the current infra-red

and ambient light readings for use in determining motor

vector values and perceptual and motivational variables:

irtot Z
X6

iZ1

irðiÞ; irleft Z
X3

iZ1

irðiÞ; irright Z
X6

iZ4

irðiÞ;

irdiff Z jirleftKirrightj; side Z
left; irleftR irright

right; otherwise
;

(

detectðiÞZ
1; irðiÞO30

0; otherwise
; ntouch Z

X6

iZ1

detectðiÞ;

(

litðiÞZ
1; ambðiÞ!100

0; otherwise
; nlit Z

X6

iZ1

litðiÞ:

(



Table B1

The condition-action mapping employed by each action sub-system to generate a motor vector and a busy signal value (where needed) at each time-step

Cylinder-seek:

irtot%500 vseekZ(0,1.00, 0,1.00, 0,0,0, 0,0) //no nearby objects

//fast ahead

irtotO500 and nlit S2 //strong light (nest)

sdZleft: vseekZ(0.27,0, 1.00,0, 0,0,0, 0,0) //backup, rotating right

sdZright: vseekZ(1.00,0, 0.27,0, 0,0,0, 0,0) //backup, rotating left

500!irtot%1025 and nlit!2 vseekZ(0,1.00, 0,1.00, 0,0,0, 0,0) //nearby object

//fast ahead

1025!irtot%2000 and nlit!2 //possible cylinder

sideZleft: vseekZ(0.20,0, 0,0.15, 0,0,0, 0,0) //rotate toward object

sideZright: vseekZ(0,0.15, 0.20,0, 0,0,0, 0,0) //rotate toward object

irtotO2000 and nlit!2 //probable wall

sideZleft: vseekZ(0,nws, nws,0, 0,0,0, 0,0) //rotate away (right)

sideZright: vseekZ(nws,0, 0,nws, 0,0,0, 0,0) //rotate away (left)

Wall-seek:

irtot%10 vwallZ(0,1.0, 0,1.0, 0,0,0, 0,0) //in ‘free space’

//fast ahead

10!irtot%500 vwallZ(0,0.50, 0,0.50, 0,0,0, 0,0) //some contact

//slow ahead

irtotO500 //near an obstacle

sideZleft: vwallZ(0,nws, nws,0, 0,0,0, 0,0) //rotate right

sideZright: vwallZ(nws,0, 0,nws, 0,0,0, 0,0) //rotate left

wall-follow:

irtot%600 //well away from wall

sideZleft: vfollZ(0,0.20, 0,0.27, 0,0,0, 0,0) //veer-in sharp left

sideZright: vfollZ(0,0.27, 0,0.20, 0,0,0, 0,0) //veer-in sharp right

if 600!irtot!1200 //away from wall

sideZleft: vfollZ(0,sws, 0,fws, 0,0,0, 0,0) //veer-in left

sideZright: vfollZ(0,fws, 0,sws, 0,0,0, 0,0) //veer-in right

1200%irtot!2000 //quite near wall

sideZleft: vfollZ(0,fws, 0,sws, 0,0,0, 0,0) //veer-out gently right

sideZright: vfollZ(0,sws, 0,fws, 0,0,0, 0,0) //veer-out gently left

irtotO2000 //very close to wall

sideZleft: vfollZ(0,0.15, 0.15,0, 0,0,0, 0,0) //rotate right

sideZright: vfollZ(0.15,0, 0,0.15, 0,0,0, 0,0) //rotate left

ntouchs1 bfollZ0

ntouchZ1 bfollZ1

Cylinder-pickup:

0!tpick!0.3 bpickZ0, vpickZ(0,0.10, 0,0.10, 0,0,0, 0,0) //slow approach

0.3%tpick!1.4 bpickZ1, vpickZ(0.20,0, 0.20,0, 0,0,0, 1.0,0) //backup, open gripper

1.4%tpick!1.8 bpickZ1, vpickZ(0,0, 0,0, 0,0,1.0, 0,0) //lower arm (floor)

1.8%tpick!2.8 bpickZ1, vpickZ(0,0, 0,0, 0,0,0, 0,1.0) //close gripper

2.8%t!3.5 bpickZ1, vpickZ(0,0, 0,0, 1.0,0,0, 0,0) //raise arm (vertical)

3.6%tpick bpickZ0, vpickZ(0,0, 0,0, 0,0,0, 0,0), tZ0.0 //idle

Cylinder-deposit:

0!tdep!0.8 bdepZ1, vdepZ(0,0, 0,0, 0,1.0,0, 0,0) //lower arm (horizontal)

0.8%tdep!1.6 bdepZ1, vdepZ(0,0, 0,0, 0,0,0, 1.0,0) //release cylinder

1.6%tdep!2.4 bdepZ1, vdepZ(0,0, 0,0, 1.0,0,0, 0,0) //raise arm (vertical)

2.4%tdep bdepZ0, vdepZ(0,0, 0,0, 0,0,0, 0,0), tZ0.0 //idle
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Appendix B. Action sub-systems

Each action sub-system generates a motor vector:
vZ ½vlwsK; vlwsC; vrwsK; vrwsC; vvert; vhoriz; vfloor; vopen; vclose�

where 0%vj%1cvj2v:
The first four elements of v correspond to the backward

and forward components of the desired left (vlwsK,vlwsC)

and right (vrwsK,vrwsC) wheel speeds, the next three to

alternate positions for the arm (vvert,vhoriz,vfloor) and the

last two to instructions to open or close the gripper (vopen,

vclose).

The following variable wheel speed values are

computed based on current sensory input, for use by action
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sub-systems:

nws Z

0:07; irdiff!30

irdiff =450; irdiff!450

1:0; otherwise

;

8><
>:

sws Z 0:4K5:0!10K4jirtotK1200j;

fws Z 0:4K3:5!10K4jirtotK1200j:

The condition-action mapping employed by each action

sub-system to generate a motor vector and a busy signal

value (where needed), at each time-step, are given in

Table B1 in pseudo code. Note that for the two ‘fixed action

patterns’—cylinder-pickup and cylinder-deposit—the con-

dition element of the mapping indicates dependency on

elapsed time (in seconds) since the start of the behavior as

recorded by the relevant sub-system clock (tpick or tdep), see

Section 3.3.2 for details.
Appendix C. Perceptual and motivational sub-systems

Detecting a wall. A wall is detected if the sum of infrared

readings across all forward-facing sensors indicates a nearby

surface and either the left-most(1) or right-most(6) sensor

input suggest a nearby surface on that side or three or more of

the forward sensors detect a surface at any distance (inputO
30). These conditions are required to allow a wall to be

detected when it is approached at any angle, or when the

robot is moving parallel to a wall. A wall can only be detected

when the arm is raised above horizontal (arm( )!Z227)

since, otherwise, the gripper arm will be detected as a wall

(note that the gripper arm may still be responded to as a

‘surface’ by action sub-systems).

pwall Z

C1; ðirtotO800Þ

o

irð1ÞO800n irð6ÞO800

n
X6

iZ1

detectðiÞR3

0
BB@

1
CCA

oðarmð Þ!Z 227Þ

K1; otherwise

8>>>>>>>>><
>>>>>>>>>:

Detecting a nest: A nest is detected if the ambient light

reading on at least two of the forward peripheral sensors is

below a threshold, hence:

pnest Z
C1; nlitR2

K1; otherwise

(

Detecting a cylinder. A cylinder is detected when the two

front-most sensors (3 and 4) detect a surface at very close

proximity, and the two sensors either side (2 and 5) of the

front detect no surface. A cylinder cannot be detected in
the nest (to prevent perceptual aliasing):

pcyl Z

C1; ðirð2Þ!10o irð3ÞO1000o irð4Þ

O1000o irð5Þ!10Þo ðpnestsC1Þ

K1; otherwise

:

8><
>:

Gripper status. The gripper is considered to contain a

cylinder when the optical sensor is triggered:

pgrip Z
C1; gripð ÞZ 1

K1; otherwise
:

(

The simulated motivation mfear is initialized to 1.0 and

decays toward a minimum value of 0.0 at a rate of K0.0007

per step; the motivation mhung is initialized to 0.2 and

increases at a constant rate of C0.0015 per step toward a

maximum of 1.0, except on any time-step where a cylinder is

deposited in a ‘nest’ area at which point it falls immediately

to 0.0.
Appendix D. The motor plant

The two wheel motors can be powered forwards and

backwards and are controlled by integer-valued motor

commands ranging from K20 (maximum reverse) to C20

(maximum advance). The robot gripper turret is powered by

two motors, one to lift/lower the arm, the other to open/close

the gripper. For the current model the useful range of

operation for the arm motor varies from touching the floor

(255), to overhead/vertical (152). The gripper motor is

controlled by a binary command signal of 1 to close, 0 to

open. To operate within these constraints the elements of the

aggregate motor vector

v̂Z ½v̂lwsC; v̂lwsK; v̂rwsC; v̂rwsK; v̂up; v̂middle; v̂down; v̂open; v̂closed�

are converted into instructions to the four robot motors as

follows

wheels : lwsZ 15ðv̂lwsCKv̂lwsKÞ; rwsZ 15ðv̂rwsCKv̂rwsKÞ

arm : unless v̂vert C v̂horiz C v̂floor Z 0:0

arm_position Z
152!v̂vert C227!v̂horiz C255!v̂floor

v̂vert C v̂horiz C v̂floor

gripper : unless v̂open C v̂closed Z 0:0

gripper_position Z
1ðclosedÞ; v̂closedKv̂openO0:0

0ðopenÞ; otherwise
;

(

where all fractional values are rounded to the nearest integer.
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